Экспрессия CDR1, CDR2, MDR1 и ERG11 у устойчивых к азолам штаммов Сandida albicans, выделенных от ВИЧ-инфицированных пациентов в городе Москве

Обложка

Цитировать

Полный текст

Аннотация

Грибы рода Candida — повсеместно распространенные оппортунисты человека, способные вызывать инфекции различной локализации, а также угрожающие жизни состояния у иммунокомпрометированных пациентов, число которых в последние годы неуклонно растет. Это ВИЧ-инфицированные, пациенты с различными онкологическими заболеваниями и пациенты, перенесшие трансплантацию гемопоэтических стволовых клеток. Кроме того, распространяется устойчивость к противогрибковым препаратам. Природно-чувствительные к азолам Candida albicans обладают разнообразными механизмами приобретенной устойчивости, включая эффлюксные переносчики и амплификацию гена белка-мишени. Данное исследование проводилось с целью оценить распространенность данных механизмов в выборке изолятов, выделенных от ВИЧ-инфицированных пациентов в Московском регионе Российской Федерации, охарактеризовать взаимосвязь данных механизмов и закономерности развития устойчивости. 18 устойчивых к флуконазолу и вориконазолу штаммов C. albicans были выделены от ВИЧ-инфицированных пациентов с рецидивирующим орофарингеальным кандидозом, находящихся на лечении в ГБУЗ ИКБ № 2 ДЗМ. Уровни экспрессии генов ERG11, MDR1, CDR1, CDR2, участвующих в формировании приобретенной устойчивости к азолам были измерены с помощью количественной полимеразной цепной реакции, метода –2ΔΔCT с генами ACT и PMA в качестве контрольных генов и референсных значений чувствительных изолятов. Уровни экспрессии выше средних значений чувствительных изолятов более чем на 3 стандартных отклонения считались достоверно повышенными. У большей части изолятов обнаружены повышенные уровни экспрессии генов CDR1 и CDR2: 89 и 78% соответственно. Уровень экспрессии гена MDR1 был повышен только в 28% случаев. Уровни экспрессии ERG11 были достоверно повышенными у 78% изолятов. У 4 штаммов были значительно повышены уровни экспрессии всех исследуемых генов устойчивости. В данной выборке изолятов C. albicans приобретенная устойчивость в основном связана с эффлюксными переносчиками, кодируемыми генами CDR1 и CDR2. Также, у большинства изолятов выявлен повышенный уровень экспрессии гена белка-мишени азолов — ERG11. Уровень экспрессии гена эффлюксного переносчика MDR1 был повышен в наименьшем числе образцов. Нельзя также исключать вероятную роль других механизмов приобретенной устойчивости, таких как мутации в гене ERG11. Можно предположить, что выявленные механизмы устойчивости являются следствием длительного, широкого, а порой и бесконтрольного применения азолов, в том числе для лечения и профилактики кандидозов в группе ВИЧ-инфицированных пациентов.

Ключевые слова

Об авторах

А. Д. Воропаев

ФГАОУ ВО Первый московский государственный медицинский университет имени И.М. Сеченова Минздрава России (Сеченовский Университет)

Автор, ответственный за переписку.
Email: advoropaev@gmail.com

аспирант кафедры микробиологии, вирусологии и иммунологии

Россия, Москва

Д. А. Екатеринчев

ФГАОУ ВО Первый московский государственный медицинский университет имени И.М. Сеченова Минздрава России (Сеченовский Университет)

Email: ekaterinchevda@yandex.ru

аспирант кафедры микробиологии, вирусологии и иммунологии

Россия, Москва

Ю. Н. Урбан

ФБУН Московский научно-исследовательский институт эпидемиологии и микробиологии им. Г.Н. Габричевского Роспотребнадзора

Email: urbanek@mail.ru

к.б.н., старший научный сотрудник лаборатории клинической микробиологии и биотехнологии

Россия, Москва

В. В. Зверев

ФГАОУ ВО Первый московский государственный медицинский университет имени И.М. Сеченова Минздрава России (Сеченовский Университет)

Email: vitalyzverev@outlook.com

академик РАН, д.б.н., профессор, зав. кафедрой микробиологии, вирусологии и иммунологии

Россия, Москва

Ю. В. Несвижский

ФГАОУ ВО Первый московский государственный медицинский университет имени И.М. Сеченова Минздрава России (Сеченовский Университет)

Email: nesviz@mail.ru

д.м.н., профессор, заслуженный деятель науки РФ, профессор кафедры микробиологии, вирусологии и иммунологии

Россия, Москва

Е. А. Воропаева

ФБУН Московский научно-исследовательский институт эпидемиологии и микробиологии им. Г.Н. Габричевского Роспотребнадзора

Email: voropaevaea2011@gmail.com

д.б.н., доцент, главный научный сотрудник, руководитель отдела медицинской биотехнологии

Россия, Москва

Е. И. Лиханская

ФБУН Московский научно-исследовательский институт эпидемиологии и микробиологии им. Г.Н. Габричевского Роспотребнадзора

Email: lihanskaya.ei@gmail.com

к.б.н., руководитель лаборатории микробиологии и профилактики кишечных инфекций

Россия, Москва

М. С. Афанасьев

ФГАОУ ВО Первый московский государственный медицинский университет имени И.М. Сеченова Минздрава России (Сеченовский Университет)

Email: nesviz@mail.ru

д.м.н., профессор кафедры клинической аллергологии и иммунологии

Россия, Москва

С. С. Афанасьев

ФБУН Московский научно-исследовательский институт эпидемиологии и микробиологии им. Г.Н. Габричевского Роспотребнадзора

Email: afanasievss409.4@bk.ru

д.м.н., профессор, заслуженный деятель науки РФ, главный научный сотрудник

Россия, Москва

Список литературы

  1. Беженар М.Б., Плахова К.И. Механизмы развития резистентности к противогрибковым препаратам грибов рода Candida при рецидивирующем течении урогенитального кандидоза // Молекулярная генетика, микробиология и вирусология. 2020. Т. 38, № 1. С. 15–23. [Bezhenar M.B., Plakhova K.I. Mechanisms of developing antifungal drug resistance of candida spp. in recurrent urogenital candidiasis. Molekulyarnaya genetika, mikrobiologiya i virusologiya = Molecular Genetics, Microbiology and Virology, 2020, vol. 35, no. 1, pp. 15–23. (In Russ.)] doi: 10.17116/molgen20203801115
  2. Веселов А.В., Козлов Р.С. Инвазивный кандидоз: современные аспекты эпидемиологии, диагностики, терапии и профилактики у различных категорий пациентов (в вопроса и ответах) // Клиническая микробиология и антимикробная химиотерапия. 2016. Т. 18, № 2 (Приложение). С. 1–104. [Veselov A.V., Kozlov R.S. Invasive candidiasis: modern aspects of epidemiology, diagnosis, therapy, and prevention in various categories of patients. Klinicheskaya mikrobiologiya i antimikrobnaya khimioterapiya = Clinical Microbiology and Antimicrobial Chemotherapy, 2016, vol. 18, no. 2 (suppl.), pp. 1–104. (In Russ.)]
  3. Пашинина О.А., Карташова О.Л., Пашкова Т.М., Попова Л.П. Антимикотикорезистентность грибов рода Candida, выделенных из репродуктивного тракта женщин с воспалительными заболеваниями гениталий // Бюллетень Оренбургского Научного Центра УрО РАН. 2016. № 3. 9 c. [Pashinina O.A., Kartashova O.L., Pashkova T.M., Popova L.P. Antimycotic resistance of Candida fungi isolated from the reproductive tract of women with inflammatory diseases of the genitals. Byulleten’ Orenburgskogo Nauchnogo Tsentra UrO RAN = Bulletin of the Orenburg Scientific Center of the Ural Branch of the Russian Academy of Sciences, 2016, no. 3, 9 p. (In Russ.)]
  4. Araújo D., Mil-Homens D., Henriques M., Silva S. Anti-EFG1 2’-OMethylRNA oligomer inhibits Candida albicans filamentation and attenuates the candidiasis in Galleria mellonella. Mol. Ther. Nucleic Acids, 2021, vol. 27, pp. 517–523. doi: 10.1016/ j.omtn.2021.12.018
  5. Assress H.A., Selvarajan R., Nyoni H., Mamba B.B., Msagati T.A.M. Antifungal azoles and azole resistance in the environment: current status and future perspectives — a review. Reviews in Environmental Science and Bio/Technology, 2021, vol. 20, pp. 1011–1041. doi: 10.1007/s11157-021-09594-w
  6. Banerjee A., Pata J., Sharma S., Monk B.C., Falson P., Prasad R. Directed mutational strategies reveal drug binding and transport by the MDR transporters of Candida albicans. J. Fungi (Basel), 2021, vol. 7, no. 2: 68. doi: 10.3390/jof7020068
  7. Bhattacharya S., Sae-Tia S., Fries B.C. Candidiasis and mechanisms of antifungal resistance. Antibiotics, 2020, vol. 9, no. 6: 312. doi: 10.3390/antibiotics9060312
  8. Biswas C., Chen C.-A., Halliday C., Kennedy K., Playford E.G., Marriott D.J., Slavin M.A., Sorrell T.C., Sintchenko V. Identification of genetic markers of resistance to echinocandins, azoles and 5-fluorocytosine in Candida glabrata by next-generation sequencing: a feasibility study. Clin. Microbiol. Infect., vol. 23, no. 9, pp. 676.e7–676.e10. doi: 10.1016/j.cmi.2017.03.014
  9. Bongomin F., Gago S., Oladele R., Denning D. Global and multi-national prevalence of fungal diseases — estimate precision. J. Fungi (Basel), 2017, vol. 3, no. 4: 57. doi: 10.3390/jof3040057
  10. Flowers S.A., Barker K.S., Berkow E.L., Toner G., Chadwick S.G., Gygax S.E., Morschhäuser J., Rogers P.D. Gain-of-function mutations in UPC2 are a frequent cause of ERG11 upregulation in azole-resistant clinical isolates of Candida albicans. Eukaryotic Cell. 2012, vol. 11, no. 10, pp. 1289–1299. doi: 10.1128/EC.00215-12
  11. Garcia-Effron G. Molecular markers of antifungal resistance: potential uses in routine practice and future perspectives. J. Fungi (Basel), 2021, vol. 7, no. 3: 197. doi: 10.3390/jof7030197
  12. Graham D.O., Wilson R.K., Ruma Y.N., Keniya M.V., Tyndall J.D.A., Monk B.C. Structural insights into the azole resistance of the Candida albicans darlington strain using Saccharomyces cerevisiae lanosterol 14-demethylase as a surrogate. J. Fungi (Basel), 2021, vol. 7, no. 11: 897. doi: 10.3390/jof7110897
  13. Hampe I.A.I., Friedman J., Edgerton M., Morschhäuser J. An acquired mechanism of antifungal drug resistance simultaneously enables Candida albicans to escape from intrinsic host defenses. PLoS Pathog., 2017, vol. 13, no. 9: e1006655. doi: 10.1371/journal.ppat.1006655
  14. Hoving J.C., Brown G.D., Gómez B.L., Govender N.P., Limper A.H., May R.C., Meya D.B. AIDS-related mycoses: updated progress and future priorities. Trends Microbiol., 2020, vol. 28, no. 6, pp. 425–428. doi: 10.1016/j.tim.2020.01.009
  15. Kukurudz R.J., Chapel M., Wonitowy Q., Bukari A.-R.A., Sidney B., Sierhuis R., Gerstein A.C. Acquisition of cross-azole tolerance and aneuploidy in Candida albicans strains evolved to posaconazole. G3 (Bethesda), 2022, vol. 12, no. 9: jkac156 doi: 10.1093/g3journal/jkac156
  16. Lee Y., Puumala E., Robbins N., Cowen L.E. Antifungal drug resistance: molecular mechanisms in Candida albicans and beyond. Chem. Rev., 2021, vol. 121, no. 6, pp. 3390–3411. doi: 10.1021/acs.chemrev.0c00199
  17. Liu J.-Y.Y., Shi C., Wang Y., Li W.-J.J., Zhao Y., Xiang M.-J.J. Mechanisms of azole resistance in Candida albicans clinical isolates from Shanghai, China. Res. Microbiol., 2015, vol. 166, no. 3, pp. 153–161. doi: 10.1016/j.resmic.2015.02.009
  18. Livak K.J., Schmittgen T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods, 2001, vol. 25, no. 4, pp. 402–408. doi: 10.1006/meth.2001.1262
  19. Maras B., Maggiore A., Mignogna G., D’Erme M., Angiolella L. Hyperexpression of CDRs and HWP1 genes negatively impacts on Candida albicans virulence. PLoS One, 2021, vol. 16, no. 6: e0252555. doi: 10.1371/journal.pone.0252555
  20. Morio F., Pagniez F., Besse M., Oise Gay-Andrieu F., Miegeville M., Le Pape P. Deciphering azole resistance mechanisms with a focus on transcription factor-encoding genes TAC1, MRR1 and UPC2 in a set of fluconazole-resistant clinical isolates of Candida albicans. Int. J. Antimicrob. Agents, 2013, vol. 42, pp. 410–415. doi: 10.1016/j.ijantimicag.2013.07.013.
  21. Morschhäuser J. Regulation of multidrug resistance in pathogenic fungi. Fungal Genet. Biol., 2010, vol. 47, no. 2, pp. 94–106. doi: 10.1016/j.fgb.2009.08.002
  22. Moye-Rowley W.S. Linkage between genes involved in azole resistance and ergosterol biosynthesis. PLoS Pathog., 2020, vol. 16, no. 9: e1008819. doi: 10.1371/journal.ppat.1008819
  23. Niimi M., Niimi K., Tanabe K., Cannon R.D., Lamping E. Inhibitor resistant mutants give important insights into Candida albicans ABC transporter Cdr1 substrate specificity and help elucidate efflux pump inhibition. Antimicrob. Agents Chemother., 2022, vol. 66, no. 1: e0174821. doi: 10.1128/AAC.01748-21
  24. Oliveira J.M.V., Oliver J.C., Dias A.L.T., Padovan A.C.B., Caixeta E.S., Ariosa M.C.F. Detection of ERG11 Overexpression in Candida albicans isolates from environmental sources and clinical isolates treated with inhibitory and subinhibitory concentrations of fluconazole. Mycoses, 2021, vol. 64, no. 2, pp. 220–227 doi: 10.1111/myc.13208
  25. Orlandini R.K., Bepu D.A.N., Saraiva M.D.C.P., Bollela V.R., Motta A.C.F., Lourenço A.G. Are Candida albicans isolates from the oral cavity of HIV-infected patients more virulent than from non-HIV-infected patients? Systematic review and meta-analysis. Microbial Pathogenesis, 2020, vol. 149: 104477. doi: 10.1016/j.micpath.2020.104477
  26. Pankhurst C.L. Candidiasis (oropharyngeal). BMJ Clin. Evid., 2013, vol. 2013: 1304.
  27. Paul S., Moye-Rowley W.S. Multidrug resistance in fungi: regulation of transporter-encoding gene expression. Front. Physiol. Frontiers, 2014, vol. 5: 143. doi: 10.3389/fphys.2014.00143
  28. Perea S., López-Ribot J.L., Kirkpatrick W.R., McAtee R.K., Santillán R.A., Martínez M., Calabrese D., Sanglard D., Patterson T.F. Prevalence of molecular mechanisms of resistance to azole antifungal agents in candida albicans strains displaying high-level fluconazole resistance isolated from human immunodeficiency virus-infected patients. Antimicrob. Agents Chemother., 2001, vol. 45, no. 10, pp. 2676–2684. doi: 10.1128/AAC.45.10.2676-2684.2001
  29. Perlin D.S., Rautemaa-Richardson R., Alastruey-Izquierdo A. The global problem of antifungal resistance: prevalence, mechanisms, and management. Lancet Infect. Dis., 2017, vol. 17, no. 12, pp. e383–e392. doi: 10.1016/S1473-3099(17)30316-X
  30. Pfaller M.A., Carvalhaes C.G., DeVries S., Huband M.D., Castanheira M. Elderly versus nonelderly patients with invasive fungal infections: species distribution and antifungal resistance, SENTRY antifungal surveillance program 2017–2019. Diagn. Microbiol. Infect. Dis., 2022, vol. 102, no. 4: 115627. doi: 10.1016/j.diagmicrobio.2021.115627
  31. Rajadurai S.G., Maharajan M.K., Veettil S.K., Gopinath D. Comparative efficacy and safety of antifungal agents in the prophylaxis of oropharyngeal candidiasis among HIV-infected adults: a systematic review and network meta-analysis. Life (Basel), 2022, vol. 12, no. 4: 515. doi: 10.3390/life12040515
  32. Redhu A.K., Shah A.H., Prasad R. MFS transporters of Candida species and their role in clinical drug resistance. FEMS Yeast Res., 2016, vol. 16, no. 4: fow043 doi: 10.1093/femsyr/fow043
  33. Robbins N., Caplan T., Cowen L.E. Molecular evolution of antifungal drug resistance. Annu. Rev. Microbiol., 2017, vol. 71, no. 1, pp. 753–775. doi: 10.1146/annurev-micro-030117-020345
  34. Sah S.K., Hayes J.J., Rustchenko E. The role of aneuploidy in the emergence of echinocandin resistance in human fungal pathogen Candida albicans. PLoS Pathog., 2021, vol. 17, no. 5: e1009564. doi: 10.1371/journal.ppat.1009564
  35. Sanglard D., Coste A., Ferrari S. Antifungal drug resistance mechanisms in fungal pathogens from the perspective of transcriptional gene regulation. FEMS Yeast Res., 2009, vol. 9, no. 7, pp. 1029–1050. doi: 10.1111/j.1567-1364.2009.00578.x
  36. Sanguinetti M., Posteraro B., Lass-Flörl C. Antifungal drug resistance among Candida species: mechanisms and clinical impact. Mycoses, 2015, vol. 58, suppl. 2, pp. 2–13. doi: 10.1111/myc.12330
  37. Shi C., Liu J., Li W., Zhao Y., Meng L., Xiang M. Expression of fluconazole resistance-associated genes in biofilm from 23 clinical isolates of Candida albicans. Braz. J. Microbiol., 2019, vol. 50, no. 1, pp. 157–163. doi: 10.1007/s42770-018-0009-2
  38. Teo J.Q.-M., Lee S.J.-Y., Tan A.-L., Lim R.S.-M., Cai Y., Lim T.-P., Kwa A.L.-H. Molecular mechanisms of azole resistance in Candida bloodstream isolates. BMC Infect Dis., 2019, vol. 19, no. 1: 63. doi: 10.1186/s12879-019-3672-5
  39. Wakade R.S., Ristow L.C., Stamnes M.A., Kumar A., Krysan D.J. The Ndr/LATS kinase Cbk1 regulates a specific subset of Ace2 functions and suppresses the hypha-to-yeast transition in Candida albicans. mBio, 2020, vol. 11, no. 4: e01900-20. doi: 10.1128/mBio.01900-20
  40. Zhang J., Li L., Lv Q., Yan L., Wang Y., Jiang Y. The fungal CYP51s: their functions, structures, related drug resistance, and inhibitors. Front. Microbiol., 2019, vol. 10: 691. doi: 10.3389/fmicb.2019.00691

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рисунок 1. Уровни экспрессии ERG11, MDR1, CDR1, CDR2 (–2ΔΔCT)

Скачать (277KB)
3. Рисунок 2. Доли штаммов с повышенным уровнем экспрессии ERG11, MDR1, CDR1, CDR2

Скачать (28KB)

© Воропаев А.Д., Екатеринчев Д.А., Урбан Ю.Н., Зверев В.В., Несвижский Ю.В., Воропаева Е.А., Лиханская Е.И., Афанасьев М.С., Афанасьев С.С., 2022

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».