Использование пробиотиков в качестве современной адъювантной терапии инфекции SARS-CoV-2 при заболеваниях желудочно-кишечного тракта

Обложка

Цитировать

Полный текст

Аннотация

Введение. SARS-CoV-2 — это вирус, явившийся причиной развития пандемии COVID-19. Выраженность симптомов COVID-19 может варьировать от бессимптомного течения до развития острого респираторного дистресс-синдрома. У некоторых пациентов также могут отмечаться желудочно-кишечные проявления, такие как диарея, рвота и боли в животе. Недавно было показано, что у некоторых пациентов с COVID-19 также наблюдался микробный дисбактериоз со снижением количества Lactobacillus и Bifidobacterium. С ростом числа зарегистрированных случаев проявления желудочно-кишечных симптомов у пациентов с COVID-19 нами была сделана попытка обобщения возможности использования пробиотиков в качестве современной адъювантной терапии желудочно-кишечных заболеваний, вызванных инфекцией SARS-CoV-2. Материалы и методы. Был проведен комплексный поиск литературы в базах данных PubMed, Science Direct, Google Scholar по указанной теме, включая анализ библиографических источников других статей. В результате обнаружено 2836 статей, 55 из них соответствовали критериям приемлемости включения в настоящий систематический обзор. Результаты и обсуждение. Пробиотики могут влиять на желудочно-кишечный тракт через ряд механизмов, включая: 1) конкурентное исключение патогенов и выработку антимикробных веществ; 2) ферментативную активность и выработку летучих жирных кислот; 3) адгезию клеток и выработку муцина; 4) усиление эпителиального барьера; 5) модуляцию иммунной системы. Согласно последним данным, пробиотики используются у некоторых пациентов с COVID-19 с желудочно-кишечными проявлениями. Также считается, что они помогают компенсировать эффекты цитокинового шторма, подавляя провоспалительные цитокины, и повышают иммунитет пациента. Заключение. Пробиотики можно использовать в качестве современной адъювантной терапии для купирования желудочно-кишечных проявлений при инфекции SARS-CoV-2 и предотвращения дальнейших осложнений COVID-19. Однако для определения эффективности пробиотиков у пациентов с COVID-19 необходимо проведение дальнейших клинических исследований.

Об авторах

Денни Будийоно

Университет Себелас Марет

Автор, ответственный за переписку.
Email: denny.budiyono@yahoo.co.id

врач общей практики, медицинский факультет

Индонезия, г. Суракарта

А. М. Интан

Университет Себелас Марет

Email: intanardyla1608@gmail.com

специалист по внутренним болезням, магистр наук в области здравоохранения, Больница доктора Моварди, медицинский факультет

Индонезия, г. Суракарта

П. А. Нурхасан

Университет Себелас Марет

Email: dr.nurhasan21@staff.uns.ac.id

специалист по внутренним болезням, магистр наук в области здравоохранения, Больница доктора Моварди, медицинский факультет

Индонезия, г. Суракарта

Список литературы

  1. Bahreini-Esfahani N., Moravejolahkami A.R. Can Synbiotic Dietary Pattern Predict Lactobacillales Strains in Breast Milk? Breastfeed. Med., 2020, vol. 15, no. 6, pp. 387–393. doi: 10.1089/bfm.2019.0301
  2. Baud D., Dimopoulou Agri V., Gibson G.R., Reid G., Giannoni E. Using Probiotics to Flatten the Curve of Coronavirus Disease COVID-2019 Pandemic. Front. Public Health, 2020, vol. 8: 186. doi: 10.3389/fpubh.2020.00186
  3. Bermudez-Brito M., Plaza-Díaz J., Muñoz-Quezada S., Gómez-Llorente C., Gil A. Probiotic mechanisms of action. Ann. Nutr. Metab., 2012, vol. 61, no. 2, pp. 160–174. doi: 10.1159/000342079
  4. Bradley C.P., Teng F., Felix K.M., Sano T., Naskar D., Block K.E., Huang H., Knox K.S., Littman D.R., Wu H.J. Segmented Filamentous Bacteria Provoke Lung Autoimmunity by Inducing Gut–lung Axis Th17 Cells Expressing Dual TCRs. Cell Host Microbe, 2017, vol. 22, no. 5, pp. 697–704.e4: doi: 10.1016/j.chom.2017.10.007
  5. Budden K.F., Gellatly S.L., Wood D.L.A., Cooper M.A., Morrison M., Hugenholtz P., Hansbro P.M. Emerging pathogenic links between microbiota and the gut–lung axis. Nat. Rev. Microbiol., 2017, vol. 15, no. 1, pp. 55–63. doi: 10.1038/nrmicro.2016.142
  6. Canfora E.E., Jocken J.W.E., Blaak E.E. Short-chain fatty acids in control of body weight and insulin sensitivity. Nat. Rev. Endocrinol., 2015, vol. 11, no. 10, pp. 577–591. doi: 10.1038/nrendo.2015.128
  7. Chan J.F.W., Yuan S., Kok K.H., To K.K.W., Chu H., Yang J., Xing F., Liu J., Yip C.C.Y., Poon R.W.S., Tsoi H.W., Lo S.K.F., Chan K.H., Poon V.K.M., Chan W.M., Ip J.D., Cai J.P., Cheng V.C.C., Chen H., Hui C.K.M., Yuen K.Y. A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster. Lancet, 2020, vol. 395, no. 10223, pp. 514–523. doi: 10.1016/S0140-6736(20)30154-9
  8. Channappanavar R., Fehr A.R., Vijay R., Mack M., Zhao J., Meyerholz D.K., Perlman S. Dysregulated Type I Interferon and Inflammatory Monocyte-Macrophage Responses Cause Lethal Pneumonia in SARS-CoV-Infected Mice. Cell Host Microbe, 2016, vol. 19, no. 2, pp. 181–193. doi: 10.1016/j.chom.2016.01.007
  9. Channappanavar R., Zhao J., Perlman S. T cell-mediated immune response to respiratory coronaviruses. Immunol. Res., 2014, vol. 59, no. 1–3, pp. 118–128. doi: 10.1007/s12026-014-8534-z
  10. Chousterman B.G., Swirski F.K., Weber G.F. Cytokine storm and sepsis disease pathogenesis. Semin. Immunopathol., 2017, vol. 39, no. 5, pp. 517–528. doi: 10.1007/s00281-017-0639-8
  11. Dang A.T., Marsland B.J. Microbes, metabolites, and the gut–lung axis. Mucosal Immunol., 2019, vol. 12, no. 4, pp. 843–850. doi: 10.1038/s41385-019-0160-6
  12. Dhar D., Mohanty A. Gut microbiota and Covid-19 — possible link and implications. Virus Res., 2020, vol. 285: 198018. doi: 10.1016/j.virusres.2020.198018
  13. Enaud R., Prevel R., Ciarlo E., Beaufils F., Wieërs G., Guery B., Delhaes L. The Gut–lung Axis in Health and Respiratory Diseases: A Place for Inter-Organ and Inter-Kingdom Crosstalks. Front. Cell Infect. Microbiol., 2020, vol. 10: 9. doi: 10.3389/fcimb.2020.00009
  14. Giorgetti G., Brandimarte G., Fabiocchi F., Ricci S., Flamini P., Sandri G., Trotta M.C., Elisei W., Penna A., Lecca P.G., Picchio M., Tursi A. Interactions between Innate Immunity, Microbiota, and Probiotics. J. Immunol. Res., 2015, 2015: 501361. doi: 10.1155/2015/501361
  15. Guan W.J., Ni Z.Y., Hu Y., Liang W.H., Ou C.Q., He J.X., Liu L., Shan H., Lei C.L., Hui D.S.C., Du B., Li L.J., Zeng G., Yuen K.Y., Chen R.C., Tang C.L., Wang T., Chen P.Y., Xiang J., Li S.Y., Wang J.L., Liang Z.J., Peng Y.X., Wei L., Liu Y., Hu Y.H., Peng P., Wang J.M., Liu J.Y., Chen Z., Li G., Zheng Z.J., Qiu S.Q., Luo J., Ye C.J., Zhu S.Y., Zhong N.S.; China Medical Treatment Expert Group for Covid-19. Clinical Characteristics of Coronavirus Disease 2019 in China. N. Engl. J. Med., 2020, vol. 382, no. 18, pp. 1708–1720. doi: 10.1056/NEJMoa2002032
  16. Hasannejad-Bibalan M., Hekmatnezhad H. A light shining through darkness: probiotic against COVID-19. J Curr Biomed Rep, 2020, vol. 1, no. 1, pp. 1–2. doi: 10.52547/jcbior.1.1.1
  17. Hasan N., Yang H. Factors affecting the composition of the gut microbiota, and its modulation. Peer J., 2019, vol. 7: e7502. doi: 10.7717/peerj.7502
  18. Hassan S.A., Sheikh F.N., Jamal S., Ezeh J.K., Akhtar A. Coronavirus (COVID-19): A Review of Clinical Features, Diagnosis, and Treatment. Cureus, 2020, vol. 12, no. 3: e7355. doi: 10.7759/cureus.7355
  19. He Y., Wen Q., Yao F., Xu D., Huang Y., Wang J. Gut–lung axis: The microbial contributions and clinical implications. Crit. Rev. Microbiol., 2017, vol. 43, no. 1, pp. 81–95. doi: 10.1080/1040841X.2016.1176988
  20. Högner K., Wolff T., Pleschka S., Plog S., Gruber A.D., Kalinke U., Walmrath H.D., Bodner J., Gattenlöhner S., Lewe-Schlosser P., Matrosovich M., Seeger W., Lohmeyer J., Herold S. Macrophage-expressed IFN-β contributes to apoptotic alveolar epithelial cell injury in severe influenza virus pneumonia. PLoS Pathog., 2013, vol. 9, no. 2: e1003188. doi: 10.1371/journal.ppat.1003188
  21. Horowitz R.I., Freeman P.R., Bruzzese J. Efficacy of glutathione therapy in relieving dyspnea associated with COVID-19 pneumonia: A report of 2 cases. Respir. Med. Case Rep., 2020, vol. 30: 101063. doi: 10.1016/j.rmcr.2020.101063
  22. Hur K.Y., Lee M.S. Gut Microbiota and Metabolic Disorders. Diabetes Metab. J., 2015, vol. 39, no. 3, pp. 198–203. doi: 10.4093/dmj.2015.39.3.198
  23. Holshue M.L., DeBolt C., Lindquist S., Lofy K.H., Wiesman J., Bruce H., Spitters C., Ericson K., Wilkerson S., Tural A., Diaz G., Cohn A., Fox L., Patel A., Gerber S.I., Kim L., Tong S., Lu X., Lindstrom S., Pallansch M.A., Weldon W.C., Biggs H.M., Uyeki T.M., Pillai S.K.; Washington State 2019-nCoV Case Investigation Team. First Case of 2019 Novel Coronavirus in the United States. N. Engl. J. Med., 2020, vol. 382, no. 10, pp. 929–936. doi: 10.1056/NEJMoa2001191
  24. Jiang X., Tao J., Wu H., Wang Y., Zhao W., Zhou M., Huang J., You Q., Meng H., Zhu F., Zhang X., Qian M., Qiu Y. Clinical features and management of severe COVID-19: A retrospective study in Wuxi, Jiangsu Province, China. medRxiv, vol. 2020: 2020.04.10.20060335: doi: 10.1101/2020.04.10.20060335
  25. Liang W., Feng Z., Rao S., Xiao C., Xue X., Lin Z., Zhang Q., Qi W. Diarrhoea may be underestimated: a missing link in 2019 novel coronavirus. Gut, 2020, vol. 69, no. 6, pp. 1141–1143. doi: 10.1136/gutjnl-2020-320832
  26. Marsland B.J., Trompette A., Gollwitzer E.S. The Gut–lung Axis in Respiratory Disease. Ann. Am. Thorac. Soc., 2015, vol. 12, Suppl. 2, pp. S150-S156. doi: 10.1513/AnnalsATS.201503-133AW
  27. McAleer J.P., Kolls J.K. Contributions of the intestinal microbiome in lung immunity. Eur. J. Immunol., 2018, vol. 48, no. 1, pp. 39–49. doi: 10.1002/eji.201646721
  28. McAleer J.P., Nguyen N.L., Chen K., Kumar P., Ricks D.M., Binnie M., Armentrout R.A., Pociask D.A., Hein A., Yu A., Vikram A., Bibby K., Umesaki Y., Rivera A., Sheppard D., Ouyang W., Hooper L.V., Kolls J.K. Pulmonary Th17 Antifungal Immunity Is Regulated by the Gut Microbiome. J. Immunol., 2016, vol. 197, no. 1, pp. 97–107. doi: 10.4049/jimmunol.1502566
  29. McFarland L.V. Use of probiotics to correct dysbiosis of normal microbiota following disease or disruptive events: a systematic review. BMJ Open, 2014, vol. 4, no. 8: e005047. doi: 10.1136/bmjopen-2014-005047
  30. Mousa H.A. Prevention and Treatment of Influenza, Influenza-Like Illness, and Common Cold by Herbal, Complementary, and Natural Therapies. J. Evid. Based Complement. Altern. Med., 2017, vol. 22, no. 1, pp. 166–174. doi: 10.1177/2156587216641831
  31. Musa S. Hepatic and gastrointestinal involvement in coronavirus disease 2019 (COVID-19): What do we know till now? Arab. J. Gastroenterol., 2020, vol. 21, no. 1, pp. 3–8. doi: 10.1016/j.ajg.2020.03.002
  32. Neurath M.F. COVID-19 and immunomodulation in IBD. Gut, 2020, vol. 69, no. 7, pp. 1335–1342. doi: 10.1136/gutjnl-2020-321269
  33. Pan L., Mu M., Yang P., Sun Y., Wang R., Yan J., Li P., Hu B., Wang J., Hu C., Jin Y., Niu X., Ping R., Du Y., Li T., Xu G., Hu Q., Tu L. Clinical Characteristics of COVID-19 Patients With Digestive Symptoms in Hubei, China: A Descriptive, Cross-Sectional, Multicenter Study. Am. J. Gastroenterol., 2020, vol. 115, no. 5, pp. 766–773. doi: 10.14309/ajg.0000000000000620
  34. Plaza-Díaz J., Ruiz-Ojeda F.J., Gil-Campos M., Gil A. Immune-Mediated Mechanisms of Action of Probiotics and Synbiotics in Treating Pediatric Intestinal Diseases. Nutrients, 2018, vol. 10, no. 1: 42. doi: 10.3390/nu10010042
  35. Plaza-Diaz J., Ruiz-Ojeda F.J., Gil-Campos M., Gil A. Mechanisms of Action of Probiotics. Adv. Nutr., 2019, vol. 10, suppl. 1, pp. S49-S66. doi: 10.1093/advances/nmy063. Erratum in: Adv. Nutr., 2020, vol. 11, no. 4, pp. 1054. doi: 10.1093/advances/nmaa042
  36. Pourhossein M., Moravejolahkami A.R. Probiotics in viral infections, with a focus on COVID-19: A Systematic Review. Authorea, vol. 2020: 158938616.61042433: doi: 10.22541/au.158938616.61042433
  37. Qamar M.A. COVID-19: a look into the modern age pandemic. Z. Gesundh. Wiss., 2022, vol. 30, no. 1, pp. 249–252. doi: 10.1007/s10389-020-01294-z
  38. Qin C., Zhou L., Hu Z., Zhang S., Yang S., Tao Y., Xie C., Ma K., Shang K., Wang W., Tian D.S. Dysregulation of Immune Response in Patients With Coronavirus 2019 (COVID-19) in Wuhan, China. Clin. Infect. Dis., 2020, vol. 71, no. 15, pp. 762–768. doi: 10.1093/cid/ciaa248
  39. Song W., Li J., Zou N., Guan W., Pan J., Xu W. Clinical features of pediatric patients with coronavirus disease (COVID-19). J. Clin. Virol., 2020, vol. 127: 104377. doi: 10.1016/j.jcv.2020.104377
  40. Tan J.Y., Tang Y.C., Huang J. Gut Microbiota and Lung Injury. Adv. Exp. Med. Biol., 2020, vol. 1238, pp. 55–72. doi: 10.1007/978-981-15-2385-4_5
  41. Tian Y., Rong L., Nian W., He Y. Review article: gastrointestinal features in COVID-19 and the possibility of faecal transmission. Aliment. Pharmacol. Ther., 2020, vol. 51, no. 9, pp. 843–851. doi: 10.1111/apt.15731
  42. Wang H., Gao K., Wen K., Allen I.C., Li G., Zhang W., Kocher J., Yang X., Giri-Rachman E., Li G.H., Clark-Deener S., Yuan L. Lactobacillus rhamnosus GG modulates innate signaling pathway and cytokine responses to rotavirus vaccine in intestinal mononuclear cells of gnotobiotic pigs transplanted with human gut microbiota. BMC Microbiol., 2016, vol. 16, no. 1: 109. doi: 10.1186/s12866-016-0727-2
  43. West C.E., Jenmalm M.C., Prescott S.L. The gut microbiota and its role in the development of allergic disease: a wider perspective. Clin. Exp. Allergy, 2015, vol. 45, no. 1, pp. 43–53. doi: 10.1111/cea.12332
  44. World Health Organization. Coronavirus disease 2019 (COVID-19) Situation Report – 51. 11 March 2020. WHO, 2020, vol. 51, pp. 1–10. URL: https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200311-sitrep-51-covid-19.pdf?sfvrsn=1ba62e57_10
  45. World Health Organization. Coronavirus disease 2019 (COVID-19) Situation Report – 146. 14 June 2020. WHO, 2020, vol. 146, pp. 1–15. URL: https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200614-covid-19-sitrep-146.pdf?sfvrsn=5b89bdad_6
  46. Wong S.H., Lui R.N., Sung J.J. Covid-19 and the digestive system. J. Gastroenterol. Hepatol., 2020, vol. 35, no. 5, pp. 744–748. doi: 10.1111/jgh.15047
  47. Xiao F., Tang M., Zheng X., Liu Y., Li X., Shan H. Evidence for Gastrointestinal Infection of SARS-CoV-2. Gastroenterology, 2020, vol. 158, no. 6, pp. 1831–1833.e3: doi: 10.1053/j.gastro.2020.02.055
  48. Xu X.W., Wu X.X., Jiang X.G., Xu K.J., Ying L.J., Ma C.L., Li S.B., Wang H.Y., Zhang S., Gao H.N., Sheng J.F., Cai H.L., Qiu Y.Q., Li L.J. Clinical findings in a group of patients infected with the 2019 novel coronavirus (SARS-Cov-2) outside of Wuhan, China: retrospective case series. BMJ, 2020, vol. 368: m606. doi: 10.1136/bmj.m606
  49. Xu Y., Li X., Zhu B., Liang H., Fang C., Gong Y., Guo Q., Sun X., Zhao D., Shen J., Zhang H., Liu H., Xia H., Tang J., Zhang K., Gong S. Characteristics of pediatric SARS-CoV-2 infection and potential evidence for persistent fecal viral shedding. Nat. Med., 2020, vol. 26, no. 4, pp. 502–505. doi: 10.1038/s41591-020-0817-4
  50. Yadav A.K., Tyagi A., Kumar A., Panwar S., Grover S., Saklani A.C., Hemalatha R., Batish V.K. Adhesion of Lactobacilli and their anti-infectivity potential. Crit. Rev. Food Sci. Nutr., 2017, vol. 57, no. 10, pp. 2042–2056. doi: 10.1080/10408398.2014.918533
  51. Young B.E., Ong S.W.X., Kalimuddin S., Low J.G., Tan S.Y., Loh J., Ng O.T., Marimuthu K., Ang L.W., Mak T.M., Lau S.K., Anderson D.E., Chan K.S., Tan T.Y., Ng T.Y., Cui L., Said Z., Kurupatham L., Chen M.I., Chan M., Vasoo S., Wang L.F., Tan B.H., Lin R.T.P., Lee V.J.M., Leo Y.S., Lye D.C.; Singapore 2019 Novel Coronavirus Outbreak Research Team. Epidemiologic Features and Clinical Course of Patients Infected With SARS-CoV-2 in Singapore. JAMA, 2020, vol. 323, no. 15, pp. 1488–1494. doi: 10.1001/jama.2020.3204
  52. Yuki K., Fujiogi M., Koutsogiannaki S. COVID-19 pathophysiology: A review. Clin. Immunol., 2020, vol. 215: 108427. doi: 10.1016/j.clim.2020.108427
  53. Zaim S., Chong J.H., Sankaranarayanan V., Harky A. COVID-19 and Multiorgan Response. Curr. Probl. Cardiol., 2020, vol. 45, no. 8: 100618. doi: 10.1016/j.cpcardiol.2020.100618
  54. Zhang D., Li S., Wang N., Tan H.Y., Zhang Z., Feng Y. The Cross-Talk Between Gut Microbiota and Lungs in Common Lung Diseases. Front. Microbiol., 2020, vol. 11: 301. doi: 10.3389/fmicb.2020.00301
  55. Zhang H., Kang Z., Gong H., Xu D., Wang J., Li Z., Li Z., Cui X., Xiao J., Zhan J., Meng T., Zhou W., Liu J., Xu H. Digestive system is a potential route of COVID-19: an analysis of single-cell co-expression pattern of key proteins in viral entry process. Gut, 2020, vol. 69, no. 6, pp. 1010–1018. doi: 10.1136/gutjnl-2020-320953
  56. Zhang W., Du R.H., Li B., Zheng X.S., Yang X.L., Hu B., Wang Y.Y., Xiao G.F., Yan B., Shi Z.L., Zhou P. Molecular and serological investigation of 2019-nCoV infected patients: implication of multiple shedding routes. Emerg. Microbes Infect., 2020, vol. 9, no. 1, pp. 386–389. doi: 10.1080/22221751.2020.1729071
  57. Zhou Y., Fu B., Zheng X., Wang D., Zhao C., Qi Y., Sun R., Tian Z., Xu X., Wei H. Pathogenic T-cells and inflammatory monocytes incite inflammatory storms in severe COVID-19 patients. Natl. Sci. Rev., 2020, vol. 7, no. 6, pp. 998–1002. doi: 10.1093/nsr/nwaa041
  58. Zuo T., Zhang F., Lui G.C.Y., Yeoh Y.K., Li A.Y.L., Zhan H., Wan Y., Chung A.C.K., Cheung C.P., Chen N., Lai C.K.C., Chen Z., Tso E.Y.K., Fung K.S.C., Chan V., Ling L., Joynt G., Hui D.S.C., Chan F.K.L., Chan P.K.S., Ng S.C. Alterations in Gut Microbiota of Patients With COVID-19 During Time of Hospitalization. Gastroenterology, 2020, vol. 159, no. 3, pp. 944–955.e8: doi: 10.1053/j.gastro.2020.05.048

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Будийоно Д., Интан А.М., Нурхасан П.А., 2025

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).