Flow cytometry for assessing blood extracellular DNA fragments level in with post-COVID syndrome convalescent subjects

Cover Page

Cite item

Full Text

Abstract

Patients with COVID-19 are characterized by markedly elevated levels of cell-free DNA in the peripheral blood, and recently neutrophil extracellular trap DNA strands were detected in the blood plasma of individuals with post-COVID syndrome. Purpose of the study — to develop a methodological approach (technology) for detecting cell-free DNA and to assess its level in the blood of individuals with post-COVID syndrome. Materials and methods. The study enrolled patients with post-COVID syndrome who had severe COVID-19 (experimental group, n = 8, aged 53 to 64 years); patients with severe COVID-19 (comparison group I, n = 5, aged 48 to 67 years); apparently healthy volunteers of different age groups: 18–30 years old (comparison group II, n = 12) and over 60 years old (comparison group III, n = 10, over 60 years old), in whose blood there were no specific IgG antibodies to the SARS-CoV-2 virus. The study was performed in microvolume whole blood samples. Results. To determine the content of intracellular DNA fragments in the blood, a flow cytofluorimetric analysis method was developed based on adding a propidium iodide dye solution to the blood together with the CD45-FITC marker used in leukocyte immunophenotyping according to the Lyse/No-Wash protocol to differentiate intact cells from cellular debris. In healthy subjects, after adding a reagent that lyses erythrocytes and fixes leukocytes to the blood, the dye penetrates into the cells and stains only the intracellular DNA in intact diploid leukocytes. The proportion of weak DNA fluorescence signals from extracellular DNA fragments in the total number of pulses recorded by the cytometer in this case not exceeds 3.2 (2.0–5.6)%. With age in case of the disease, this pattern increases to an average of 13.4 (10.1–18.6)%. In individuals with severe COVID-19, very high magnitude of the studied parameter was recorded — at the level of 82 (68.0–88.6)%. In COVID-19 convalescent patients, high levels of extracellular DNA remained for a month, gradually decreasing by the month 3 to 40.5 (27.4–52.0)%. Conclusion. According to the data obtained, the determination of extracellular DNA using the developed technology allows us to characterize the severity of COVID-19 and assess the compensatory capabilities of the body in the post-COVID period.

About the authors

Alexander L. Kravtsov

Russian Anti-Plague Institute “Microbe” of Rospotrebnadzor

Email: kravzov195723@gmail.com

DSc (Biology), Leading Researcher, Department of Immunology

Russian Federation, Saratov

Svetlana N. Klyueva

Russian Anti-Plague Institute “Microbe” of Rospotrebnadzor

Author for correspondence.
Email: klyueva.cvetlana@mail.ru

PhD (Biology), Researcher, Department of Immunology

Russian Federation, Saratov

Vitaly A. Kozhevnikov

Russian Anti-Plague Institute “Microbe” of Rospotrebnadzor

Email: rusrapi@microbe.ru

Junior Researcher, Department of Immunology

Russian Federation, Saratov

Svetlana A. Bugorkova

FKUN Russian Anti-Plague Institute "Microbe" of Rospotrebnadzor, Saratov, Russian Federation

Email: rusrapi@microbe.ru

DSc (Medicine), Head Researcher, Department of Immunology

Russian Federation, Saratov

References

  1. Артемьева О.В., Ганковская Л.В. Воспалительное старение как основа возраст-ассоциированной патологии // Медицинская иммунология. 2020. Т. 22, № 3. С. 419–432. [Artemyeva O.V., Gankovskaya L.V. Inflammaging as the basis of age-associated diseases. Meditsinskaya immunologiya = Medical Immunology (Russia), 2020, vol. 22, no. 3, pp. 419–432. (In Russ.)] doi: 10.15789/1563-0625-IAT-1938
  2. Бабаев М.А., Тухтаманова А.C., Маснева А.И. Новые направления научных исследований и клинической практики в области экстракорпоральной гемокоррекции у пациентов с полиорганной дисфункцией: обзор литературы // Вестник интенсивной терапии им. А.И. Салтанова. 2024. № 1. С. 135–147. [Babaev M.A., Tukhtamanova A.S., Masneva A.I. New directions of scientific research and clinical practice in the field of extracorporeal hemocorrection in patients with multiple organ dysfunction: a review. Vestnik intensivnoy terapii im. A.I. Saltanova = Annals of Critical Care, 2024, no. 1, pp. 135–147. (In Russ.)] doi: 10.21320/1818-474X-2024-1-135-147
  3. Бердюгина O.В. Постковидный синдром: к дискуссии о сроках наступления // Инфекция и иммунитет. 2024. Т. 14, № 3. C. 476–482. [Berdiugina O.V. Post-COVID-19 syndrome: a discussion of onset timing. Infektsiya i immunitet = Russian Journal of Infection and Immunity, 2024, vol. 14, no. 3, pp. 476–482. (In Russ.)] doi: 10.15789/2220-7619-PCS-16766
  4. Казимирский А.Н., Салмаси Ж.М., Порядин Г.В., Панина М.И., Ларина В.Н., Рыжих А.А. Постковидный синдром ассоциирован с повышением внеклеточных пуриновых оснований и нейтрофильных экстраклеточных ловушек в плазме крови // Бюллетень сибирской медицины. 2022. Т. 21, № 2. С. 41–47. [Kazimirskii A.N., Salmasi J.M., Poryadin G.V., Panina M.I., Larina V.N., Ryzhikh A.A. Post-COVID syndrome is associated with increased extracellular purine bases and neutrophil extracellular traps in the blood plasma. Byulleten’ sibirskoy meditsiny = Bulletin of Siberian Medicine, 2022, vol. 21, no. 1, pp. 41–47. (In Russ.)] doi: 10.20538/1682-0363-2022-2-41-47
  5. Кравцов А.Л., Бугоркова С.А., Клюева С.Н., Гончарова А.Ю., Кожевников В.А., Чумачкова Е.А., Портенко С.А., Щербакова С.А. Оценка интенсивности дегрануляции и изменений фенотипа нейтрофилов по уровню экспрессии FcγRIIIb в крови больных COVID-19 и реконвалесцентов // Журнал микробиологии, эпидемиологии и иммунобиологии. 2022. Т. 99, № 2. С. 172–184. [Kravtsov A.L., Bugorkova S.A., Klyueva S.N., Goncharova A.Yu., Kozhevnikov V.A., Chumachkova E.A., Portenko S.A., Shcherbakova S.A. Assessment of neutrophil degranulation intensity and changes in neutrophil phenotype by FCᵧRIIIB expression level in blood of patients with COVID-19 and convalescents. Zhurnal mikrobiologii, epidemiologii i immunobiologii = Journal of Microbiology, Epidemiology and Immunobiology, 2022, vol. 99, no. 2, pp. 172–184. (In Russ.)] doi: 10.36233/0372-9311-225
  6. Патент № 2815709 Российская Федерация, МПК G01N 33/50 (2006.01), G01N 33/577 (2006.01). Способ детекции внеклеточной ДНК в цельной периферической крови с использованием проточной цитофлуориметрии: No 2022133755; заявлено 21.12.2022: опубликовано 20.03.2024 / Кравцов А.Л., Бугоркова С.А., Клюева С.Н., Кожевников В.А., Гончарова А.Ю., Шмелькова Т.П. Патентообладатель: ФКУН Российский противочумный институт «Микроб» Роспотребнадзора. 13 с. [Patent No. 2815709 Russian Federation, IPC G01N 33/50 (2006.01), G01N 33/577 (2006.01). Method for detecting extracellular DNA in whole peripheral blood using flow cytometry: No. 2022133755; declared 21.12.2022: published 20.03.2024 / Kravtsov A.L., Bugorkova S.A., Klyueva S.N., Kozhevnikov V.A., Goncharova A.Yu., Shmelkova T.P. Patent holder: Federal State Institution of Science Russian Anti-Plague Institute “Microbe” of Rospotrebnadzor. 13 p.]
  7. Филев А.Д., Писарев В.М. Внеклеточная ДНК в медицине неотложных состояний // Журнал им. Н.В. Склифосовского «Неотложная медицинская помощь». 2020. Т. 9, № 1. С. 96–107. [Filev A.D., Pisarev V.M. Cell-free DNA in emergency medical care. Zhurnal im. N.V. Sklifosovskogo “Neotlozhnaya meditsinskaya pomoshch’” = Journal named after N.V. Sklifosovsky Emergency Medical Care, 2020, vol. 9, no. 1, pp. 96–107. (In Russ.)] doi: 10.23934/2223-9022-2020-9-1-96-10
  8. Heil M. Self-DNA driven inflammation in COVID-19 and after mRNA-based vaccination: lessons for non-COVID-19 pathologies. Front. Immunol., 2024, no. 14: 1259879. doi: 10.3389/fimmu.2023.1259879
  9. Hovhannisyan G., Harutyunyan T., Leihr T. The diagnostic, prognostic, and therapeutic potential of cell-free DNA with a special focus on COVID-19 and other viral infections. Int. J. Mol. Sci., 2023, vol. 24, no. 18: 14163. doi: 10.3390/ijms241814163
  10. Tanaka A., Wakayama K., Fukuda Y., Ohta S., Homma T., Ando K., Nishihara Y., Nakano R., Zhao J., Suzuki Y., Kyotani Y., Yano H., Kasahara K., Chung K.-P., Sagara H., Yoshizumi M., Nakahira K. Increased levels of circulating cell-free DNA in COVID-19 patients with respiratory failure. Sci. Rep., 2024, no. 14: 17399. doi: 10.1038/s41598-024-68433-4
  11. Teo Y.V., Capri M., Morsiani C., Pizza G., Faria A.M.C., Franceschi C., Neretti N. Cell-free DNA as a biomarker of aging. Aging Cell, 2019, no. 18: e12890. doi: 10.1111/acel.12890
  12. Thierry A., Roch B. Neutrophil extracellular traps and by-products play a key role in COVID-19: pathogenesis, risk factors, and therapy. J. Clin. Med., 2020, vol. 9, no. 9: 2942. doi: 10.3390/jcm9092942
  13. Sawadogo S.A., Dighero-Kemp B., Ouédraogo D.D., Hensley L., Sakandé J. How NETosis could drive “Post-COVID-19 syndrome” among survivors. Immunol. Lett., 2020, vol. 228, pp. 35–37. doi: 10.1016/j.imlet.2020.09.005
  14. Stawski R., Nowak D., Perdas E. Cell-free DNA: potential application in COVID-19 diagnostics and management. Viruses, 2022, no. 14: 321. doi: 10.3390/v14020321
  15. Shafhat A., Omer M.,H., Albalkhi I., Razzak G.A., Abdulkader H., Rab S.A., Sabbah B.N., Alkatan K., Yaqinuddin A. Neutrophil extracellular traps and long COVID. Front. Immunol., 2023, no. 14: 1254310. doi: 10.3389/fimmu.2023.1254310
  16. Vera E.J., Chew Y.V., Nicholson L., Bruns H., Anderson P., Chen H.T., Williams L., Keung K., Zanjani N.T., Dervish S., Patrick E., Wang X.M., Yi S., Hawthorne W., Alexander S., O’Connell P.J., Hu M. Standartization of flow cytometry for whole blood immunophenotyping of islet transplant and transplant clinical trial recipients. PLoS One, 2019, vol. 14, no. 5: e0217163. doi: 10.1371/journal pone.0217163

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Figure. Result of comparative analysis of four blood samples with different content of cellular debris and extracellular DNA fragments in plasma

Download (262KB)

Copyright (c) 2025 Kravtsov A.L., Klyueva S.N., Kozhevnikov V.A., Bugorkova S.A.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».