Regulation of immune response by permafrost microorganism metabolites via effector T-lymphocytes

Cover Page

Cite item

Full Text

Abstract

Infectious agents have closely interacted with the human immune system, acquiring a set of highly sophisticated mechanisms for modulating immunity. One of the survival strategies for viruses, bacteria, protozoa, helminths and fungi is to target the regulatory T cell network (Treg: CD4+CD25hiCD127–) that controls immunopathogenic responses in many infections. Not only pathogens but also commensals are able to directly induce the conversion of naive T cells into suppressive Foxp3-expressing Tregs, while others activate pre-existing natural Tregs, in both cases suppressing pathogen-specific effector responses. However, Tregs can also contribute to immunity under certain conditions, such as at the initial stages of infection when effector cells must gain access to the site of infection, and subsequently in ensuring the generation of effector memory cells. It is noteworthy that currently little information on whether infections selectively drive pathogen-specific Tregs, and if so, whether such cells are also reactive to autoantigens are available. Further analysis of Treg subset specificity, along with a clearer picture of relative dynamics during the disease, should lead to rational strategies of immune intervention to optimize immunity and eliminate the infectious process. Thus, restoration of Treg function is important in the treatment of infectious, autoimmune and other diseases and can serve as a marker of their successful treatment. The article assesses the effect of exometabolites of derived from permafrost Bacillus bacteria obtained at different temperature conditions of their cultivation on the activity of Treg and effector T lymphocyte differentiation. Significant differences were established: secondary microbial exometabolites affect Treg (CD4+CD25hiCD127–) differentiation and expression of activation markers (CD69, CD25, HLA-DR) on CD4+ and CD8+ T lymphocytes. This effect is regulated by the type of metabolites obtained at different temperatures — “cold” (obtained at 5°C of bacterial incubation), “medium-temperature” (at 22°C) and “heat” (at 37°C) metabolites. In this case, an increase in the Treg level is associated with lower differentiation activity of CD4+ T-lymphocytes exposed to “cold” secondary exometabolites, a decrease in the differentiation activity of CD8+ T-lymphocytes treated with “warm” secondary exometabolites, and a roughly equivalent effect on the differentiation activity of CD4+ and CD8+ T-lymphocytes acted upon by “medium-temperature” secondary exometabolites.

About the authors

Sergei A. Petrov

Tyumen Scientific Centre SB RAS

Author for correspondence.
Email: tumiki@yandex.ru

DSc (Medicine), Professor, Head Researcher, Department of Cryosphere Bioresources

Russian Federation, Tyumen

Yuri G. Sukhovey

Tyumen Scientific Centre SB RAS

Email: i_yura62@mail.ru

DSc (Medicine), Professor, Head Researcher, Department of Cryosphere Bioresources

Russian Federation, Tyumen

Lyudmila F. Kalenova

Tyumen Scientific Centre SB RAS

Email: lkalenova@mail.ru

DSc (Medicine), Head Researcher, Department of Cryosphere Bioresources

Russian Federation, Tyumen

Elena G. Kostolomova

Tyumen State Medical University

Email: lenakost@mail.ru

PhD (Biology), Associate Professor, Department of Microbiology

Russian Federation, Tyumen

Alexander A. Kastornov

Tyumen Scientific Centre SB RAS

Email: alexkastornov@yandex.ru

Junior Researcher, Department of Cryosphere Bioresources

Russian Federation, Tyumen

References

  1. Гариб Ф.Ю., Ризопулу А.П. Использование Т-регуляторных клеток хозяина в стратегии иммунной эвазии патогенов (обзор) // Биохимия. 2015. Т. 80, вып. 8. С. 1141–1159. [Garib F.Yu., Rizopulu A.P. T-regulatory cells as part of the strategy of immune evasion by pathogens. Biokhimiya = Biochemistry (Moscow), 2015, vol. 80, iss. 8, pp. 1141–1159. (In Russ.)]
  2. Литвинова Л.С., Гуцол А.А., Сохоневич Н.А., Кофанова К.А., Хазиахматова О.Г., Шуплецова В.В., Кайгородова Е.В., Гончаров А.Г. Основные поверхностные маркеры функциональной активности Т-лимфоцитов // Медицинская иммунология. 2014. Т. 6, № 1. С. 7–26. [Litvinova L.S., Gutsol A.A., Sokhonevich N.A., Kofanova K.A., Khaziakhmatova O.G., Shupletsova V.V., Kaigorodova E.V., Goncharov A.G. Basic surface markers of functional activity T-lymphocytes. Meditsinskaya immunologiya = Medical Immunology (Russia), 2014, vol. 6, no. 1, pp. 7–26. (In Russ.)] doi: 10.15789/1563-0625-2014-1-7-26
  3. Юрова К.А., Хазиахматова О.Г., Тодосенко Н.М., Литвинова Л.С. Оценка влияния γC-цитокинов (IL-2, IL-7 и IL-15) на экспрессию молекул поздней активации и апоптоза (CD95 И HLA-DR) CD4+/CD8+ Т-лимфоцитами в популяции CD45RA Т-клеток in vitro // Иммунология. 2018. Т. 39, № 1. С. 20–25. [Yurova K.A., Khaziakhmatova O.G., Todosenko N.M., Litvinova L.S. Evaluation of the effect of γccytokines (IL-2, IL-7 and IL-15) on expression of the late activation molecules and apoptosis (CD95 and HLA-DR) CD4+/CD8+ T-lymphocytes in a population of CD45RA T cells in vitro. Immunologiya = Immunologiya, 2018, vol. 39, no. 1, pp. 20–25 (In Russ.)] doi: 10.18821/0206-4952-2018-39-1-20-25
  4. Atarashi K., Tanoue T., Shima T., Imaoka A., Kuwahara T., Momose Y., Cheng G., Yamasaki S., Saito T., Ohba Y., Taniguchi T., Takeda K., Hori S., Ivanov I.I., Umesaki Y., Itoh K., Honda K. Induction of colonic regulatory T cells by indigenous Clostridium species. Science, 2011, vol. 331, pp. 337–341. doi: 10.1126/science.1198469
  5. Caramalho I., Lopes Carvalho T., Ostler D., Zelenay S., Haury M., Demengeot J. Regulatory T cells selectively express toll like receptors and are activated by lipopolysaccharide. J. Exp. Med., 2003, vol. 197, pp. 403–411. doi: 10.1084/jem.20021633
  6. Cibrián D., Sánchez-Madrid F. CD69: from activation marker to metabolic gatekeeper. Eur. J. Immunol., 2017, vol. 47, no. 6, pp. 946–953. doi: 10.1002/eji.201646837
  7. Kalenova L.F., Kolyvanova S.S. Effects of temperature on the ability of metabolites from permafrost microorganisms to activate the synthesis of systemic cytokines by mononuclear cells. Bull. Exp. Biol. Med., 2019, vol. 168, no. 1, pp. 72–75. doi: 10.1007/s10517-019-04650-6
  8. Kalenova L.F., Petrov S.A., Bazhin A.S. Dose-dependent effect of Bacillus sp. metabolites from permafrost on lymphocyte differentiation in the thymus. Bull. Exp. Biol. Med., 2020, vol. 169, no. 1, pp. 67–70. doi: 10.1007/s10517-020-04826-5
  9. Kalenova L.F., Petrov S.A., Subbotin A.M., Narushko M.V., Bazhin A.S. Influence of paleobacteria on the proliferative activity of human lymphocytes in vitro. Bull. Exp. Biol. Med., 2023, vol. 174, no. 6, pp. 758–761. doi: 10.1007/s10517-023-05787-1
  10. Kalenova L.F., Petrov S.A., Sukhovei Yu.G. Reparative and immunomodulatory potential of low-molecular-weight fractions of secondary metabolites of Bacillus sp. Bull. Exp. Biol. Med., 2022, vol. 172, no. 3, pp. 332–336. doi: 10.1007/s10517-022-05387-5
  11. Kullberg M.C., Jankovic D., Gorelick P.L., Caspar P., Letterio J.J., Cheever A.W., Sher A. Bacteria-triggered CD4(+) T regulatory cells suppress Helicobacter hepaticusinduced colitis. J. Exp. Med., 2002, vol. 196, pp. 505–515. doi: 10.1084/jem.20020556
  12. Maizels R.M., Smith K.A. Regulatory T cells in infection. Adv. Immunol., 2011, vol. 112, pp. 73–136. doi: 10.1016/B978-0-12-387827-4.00003-6
  13. Mertens J., Fabri M., Zingarelli A., Kubacki T., Meemboor S., Groneck L., Seeger J., Bessler M., Hafke H., Odenthal M., Bieler J.G., Kalka C., Schneck J.P., Kashkar H., Kalka-Moll W.M. Streptococcus pneumoniae serotype 1 capsular polysaccharide induces CD8CD28 regulatory T lymphocytes by TCR crosslinking. PLoS Pathog., 2009, vol. 5: e100059. doi: 10.1371/journal.ppat.1000596
  14. O’Mahony C., Scully P., O’Mahony D., Murphy S., O’Brien F., Lyons A., Sherlock G., MacSharry J., Kiely B., Shanahan F., O’Mahony L. Commensal-induced regulatory T cells mediate protection against pathogen-stimulated NF-kB activation. PLoS Pathog., 2008, vol. 4: e1000112. doi: 10.1371/journal.ppat.1000112
  15. Petrov S.A., Sukhovei Yu.G, Kalenova L.F, Kostolomova E.G, Subbotin A.M, Kastornov A.A. The influence of permafrost microorganisms on monocytes differentiation in vitro. Bull. Exp. Biol. Med., 2023, vol. 175, no. 3, pp. 362–366. doi: 10.1007/s10517-023-05868-1
  16. Round J.L., Mazmanian S.K. Inducible Foxp3+ regulatory T-cell development by a commensal bacterium of the intestinal microbiota. Proc. Natl Acad. Sci. USA, 2010, vol. 107, pp. 12204–12209. doi: 10.1073/pnas.0909122107
  17. Round J.L., Lee S.M., Li J., Tran G., Jabri B., Chatila T.A., Mazmanian S.K. The Toll-like receptor 2 pathway establishes colonization by a commensal of the human microbiota. Science, 2011, vol. 332, pp. 974–977. doi: 10.1126/science.1206095
  18. Sing A., Rost D., Tvardovskaia N., Roggenkamp A., Wiedemann A., Kirschning C.J., Aepfelbacher M., Heesemann J. Yersinia V antigen exploits toll like receptor 2 and CD14 for interleukin 10 mediated immunosuppression. J. Exp. Med., 2002, vol. 196, pp. 1017–1024. doi: 10.1084/jem.20020908
  19. Shipkova M., Wieland E. Surface markers of lymphocyte activation and markers of cell proliferation. Clin. Chim. Acta, 2012, vol. 413, no. 17–18, pp. 1338–1349. doi: 10.1016/j.cca.2011.11.006
  20. Sutmuller R.P., Morgan M.E., Netea M.G., Grauer O., Adema G.J. Toll-like receptors on regulatory T cells: expanding immune regulation. Trends Immunol., 2006, vol. 27, no. 8, pp. 387–393. doi: 10.1016/j.it.2006.06.005
  21. Wieland E., Shipkova M. Lymphocyte surface molecules as immune activation biomarkers. Clin. Biochem., 2016, vol. 49, no. 4–5, pp. 347–354. doi: 10.1016/j.clinbiochem.2015.07.099

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Figure 1. Effect of MB-X on the activity of T-lymphocyte differentiation (in % of difference from the control level)

Download (266KB)
3. Figure 2. The effect of MB-S on the activity of T-lymphocyte differentiation (in % of difference from the control level)

Download (236KB)
4. Figure 3. The effect of MB-T on the activity of T-lymphocyte differentiation (in % of difference from the control level)

Download (269KB)

Copyright (c) 2025 Petrov S.A., Sukhovey Y.G., Kalenova L.F., Kostolomova E.G., Kastornov A.A.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».