Peripheral blood B-cells and CXCR3 expression in chronic hepatitis C virus infection
- Authors: Arsentieva N.A.1,2, Elezov D.S.1, Kudryavtsev I.V.2,3, Korobova Z.R.1,2, Totolian A.A.1,2
-
Affiliations:
- St. Petersburg Pasteur Institute
- Pavlov First State Medical University of St. Petersburg
- Institute of Experimental Medicine
- Issue: Vol 15, No 3 (2025)
- Pages: 529-535
- Section: ORIGINAL ARTICLES
- URL: https://bakhtiniada.ru/2220-7619/article/view/315135
- DOI: https://doi.org/10.15789/2220-7619-PBB-17939
- ID: 315135
Cite item
Full Text
Abstract
Hepatitis C virus (HCV) infection remains a serious global healthcare challenge, often leading to chronic disease with complications such as liver cirrhosis, hepatocellular carcinoma, and extrahepatic manifestations. According to the World Health Organization (WHO), an estimated about 50 million people lived with chronic HCV infection in 2022, highlighting the ongoing need to understand the immune mechanisms driving disease progression. HCV may evade of immunosurveillance, so that disease progression is linked to specific immune response, whereas reactivation risk after antiviral therapy exists, which together account for a need to gain understanding of underlying immune mechanisms. HCV may infect lymphocytes primarily B-cells serving as a virus reservoir and result in diverse systemic complications. The current study focused on analyzing peripheral blood CXCR3+ B-cells at various differentiation stages in patients with chronic HCV infection to assess a potential link to clinical and laboratory markers of disease progression. Blood samples collected from 58 patients with chronic HCV infection and 27 healthy controls were examined. When analyzing flow cytometry data, we noted a significant B-cell redistribution in HCV infection compared to control samples presented as a shift towards activated mature, resting memory and ‘double negative’ B-cells characterized by increased expression of chemokine receptor CXCR3. Flow cytometry analysis revealed no significant difference in total B-cell (CD19+) but elevated memory B-cells (CD27+CD19+) (p = 0.037). CXCR3 expression peaked on memory B-cells and increased across all B-cell subsets in HCV patients (p < 0.001). Redistribution toward differentiated B-cell subsets — double-negative (CD38–CD27–), resting memory (CD38–CD27+), and activated mature (CD38+CD27+) B-cells was observed, with elevated CXCR3+ percentage in the latter two subsets (p = 0.017 and p = 0.001, respectively). HCV viral load correlated positively with CD38+ B-cells and CXCR3+ naïve/activated mature subset counts but inversely with CD38+ B1/B2/memory cell levels. Genotype 1 and advanced fibrosis (F3/cirrhosis) were associated with reduced B2 cells and increased CXCR3+ B1/B2 subset levels. These findings suggest that chronic HCV infection drives B-cell differentiation and CXCR3-mediated recruitment to the liver, implicating CXCR3 in disease progression.
Keywords
Full Text
##article.viewOnOriginalSite##About the authors
Natalia A. Arsentieva
St. Petersburg Pasteur Institute; Pavlov First State Medical University of St. Petersburg
Author for correspondence.
Email: arsentieva_n.a@bk.ru
PhD (Biology), Associate Professor of the Department of Immunology, Senior Researcher, Laboratory of Molecular Immunology
Russian Federation, Санкт-Петербург; Санкт-ПетербургDmitrii S. Elezov
St. Petersburg Pasteur Institute
Email: elezovds@yahoo.com
PhD (Medicine), Junior Researcher, Laboratory of Molecular Immunology
Russian Federation, St. PetersburgIgor V. Kudryavtsev
Pavlov First State Medical University of St. Petersburg; Institute of Experimental Medicine
Email: igorek1981@yandex.ru
PhD (Biology), Associate Professor of the Department of Immunology, Head of the Cell Immunology Laboratory, Department of Immunology
Russian Federation, St. Petersburg; St. PetersburgZoya R. Korobova
St. Petersburg Pasteur Institute; Pavlov First State Medical University of St. Petersburg
Email: zoia-korobova@yandex.ru
Junior Researcher, Laboratory of Molecular Immunology, Assistant Professor, Department of Immunology
Russian Federation, St. Petersburg; St. PetersburgAreg A. Totolian
St. Petersburg Pasteur Institute; Pavlov First State Medical University of St. Petersburg
Email: totolian@spbraaci.ru
RAS Full Member, DSc (Medicine), Professor, Director, Head of the Department of Immunology
Russian Federation, St. Petersburg; St. PetersburgReferences
- Арсентьева Н.А., Кудрявцев И.В., Елезов Д.С., Семенов А.В., Басина В.В., Эсауленко Е.В., Тотолян Арег А. Экспрессия хемокинового рецептора СХСR3 на субпопуляциях В-лимфоцитов периферической крови больных хроническим вирусным гепатитом // Медицинская иммунология. 2013. Т. 15, № 5. С. 471–476. [Arsentyeva N.A., Kudryavtsev I.V., Elezov D.S., Semenov A.V., Basina V.V., Esaulenko E.V., Totolian A.A. Expression of chemokine receptor CXCR3 on subpopulations of peripheral blood B-lymphocytes in patients with chronic viral hepatitis. Meditsinskaya immunologiya = Medical Immunology (Russia), 2013, vol. 15, no. 5, pp. 471–476. (In Russ.)] doi: 10.15789/1563-0625-2013-5-471-476
- Хайдуков С.В., Байдун Л.А., Зурочка А.В., Тотолян Арег А. Стандартизованная технология «Исследование субпопуляционного состава лимфоцитов периферической крови с применением проточных цитофлюориметров-анализаторов» (Проект) // Медицинская иммунология. 2012. Т. 14, № 3. С. 255–268. [Khaydukov S.V., Baydun L.A., Zurochka A.V., Totolian Areg A. Standardized technology «Research of lymphocytes subpopulation composition in peripheral blood using flow cytometry analyzers» (Draft). Meditsinskaya immunologiya = Medical Immunology (Russia), 2012, vol. 14, no. 3, pp. 255–268. (In Russ.)] doi: 10.15789/1563-0625-2012-3-255-268
- Butera D., Marukian S., Iwamaye A.E., Hembrador E., Chambers T.J., Di Bisceglie A.M., Charles E.D., Talal A.H., Jacobson I.M., Rice C.M., Dustin L.B. Plasma chemokine levels correlate with the outcome of antiviral therapy in patients with hepatitis C. Blood, 2005, vol. 106, no. 4, pp. 1175–1182. doi: 10.1182/blood-2005-01-0126
- Curbishley S.M., Eksteen B., Gladue R.P., Lalor P., Adams D.H. CXCR3 activation promotes lymphocyte transendothelial migration across human hepatic endothelium under fluid flow. Am. J. Pathol., 2005, vol. 167, pp. 887–899. doi: 10.1016/S0002-9440(10)62060-3
- Fecteau J.F., Roy A., Néron S. Peripheral blood CD27+ IgG+ B-cells rapidly proliferate and differentiate into immunoglobulin-secreting cells after exposure to low CD154 interaction. Immunology, 2009, vol. 128, no. 1, pp. 353–365. doi: 10.1111/j.1365-2567.2008.02976.x
- Ferrari S.M., Fallahi P., Ruffilli I., Elia G., Ragusa F., Paparo S.R., Patrizio A., Mazzi V., Colaci M., Giuggioli D., Ferri C., Antonelli A. Immunomodulation of CXCL10 secretion by hepatitis C virus: could CXCL10 be a prognostic marker of chronic hepatitis C? J. Immunol. Res., 2019, vol. 2019: 5878960. doi: 10.1155/2019/5878960
- Ferri C., Antonelli A., Mascia M.T., Sebastiani M., Fallahi P., Ferrari D., Giunti M., Pileri S.A., Zignego A.L. B-cells and mixed cryoglobulinemia. Autoimmun. Rev., 2007, vol. 7, no. 2, pp. 114–120. doi: 10.1016/j.autrev.2007.02.019
- Hanley P., Sutter J.A., Goodman N.G., Du Y., Sekiguchi D.R., Meng W., Rickels M.R., Naji A., Prak E.T.L. Circulating B-cells in type 1 diabetics exhibit fewer maturation-associated phenotypes. Clin. Immunol., 2017, vol. 183, pp. 336–343. doi: 10.1016/j.clim.2017.09.021
- Ito M., Masumi A., Mochida K., Kukihara H., Moriishi K., Matsuura Y., Yamaguchi K., Mizuochi T. Peripheral B-cells may serve as a reservoir for persistent hepatitis C virus infection. J. Innate Immun., 2010, vol. 2, pp. 607–617. doi: 10.1159/000317690
- Kotb A., Ismail S., Kimito I., Mohamed W., Salman A., Mohammed A.A. Increased CD5+ B-cells are associated with autoimmune phenomena in lepromatous leprosy patients. J. Infect. Public Health, 2019, vol. 12, no. 5, pp. 656–659. doi: 10.1016/j.jiph.2019.03.001
- Kudryavtsev I.V., Arsentieva N.A., Batsunov O.K., Korobova Z.R., Khamitova I.V., Isakov D.V., Kuznetsova R.N., Rubinstein A.A., Stanevich O.V., Lebedeva A.A., Vorobyov E.A., Vorobyova S.V., Kulikov A.N., Sharapova M.A., Pevtcov D.E., Totolian A.A. Alterations in B cell and follicular T-helper cell subsets in patients with acute COVID-19 and COVID-19 convalescents. Curr. Issues Mol. Biol., 2021, vol. 44, no. 1, pp. 194–205. doi: 10.3390/cimb44010014
- Luning Prak E.T., Ross J., Sutter J., Sullivan K.E. Age-related trends in pediatric B-cell subsets. Pediatr. Dev. Pathol., 2011, vol. 14, no. 1, pp. 45–52. doi: 10.2350/10-01-0785-OA
- Mizuochi T., Ito M., Saito K., Kasai M., Kunimura T., Morohoshi T., Momose H., Hamaguchi I., Takai K., Iino S., Suzuki M., Mochida S., Ikebuchi K., Yamaguchi K. Possible recruitment of peripheral blood CXCR3+CD27+CD19+ B-cells to the liver of chronic hepatitis C patients. J. Interferon Cytokine Res., 2010, vol. 30, no. 4, pp. 243–252. doi: 10.1089/jir.2009.0047
- Mizuochi T., Ito M., Takai K., Yamaguchi K. Peripheral blood memory B-cells are resistant to apoptosis in chronic hepatitis C patients. Virus Res., 2011, vol. 155, no. 1, pp. 349–351. doi: 10.1016/j.virusres.2010.09.017
- Reyes-Avilés E., Kostadinova L., Rusterholtz A., Cruz-Lebrón A., Falck-Ytter Y., Anthony D.D. Presence of rheumatoid factor during chronic HCV infection is associated with expansion of mature activated memory B-cells that are hypo-responsive to B-cell receptor stimulation and persist during early stage of IFN-free therapy. PLoS One, 2015, vol. 10, no. 12: e0144629. doi: 10.1371/journal.pone.0144629
- Rosa D., Saletti G., De Gregorio E., Zorat F., Comar C., D’Oro U., Nuti S., Houghton M., Barnaba V., Pozzato G., Abrignani S. Activation of naive B lymphocytes via CD81, a pathogenetic mechanism for hepatitis C virus-associated B lymphocyte disorders. Proc. Natl Acad. Sci. USA, 2005, vol. 102, no. 51, pp. 18544–18549. doi: 10.1073/pnas.0509402102
- Rubinstein A., Kudryavtsev I., Arsentieva N., Korobova Z.R., Isakov D., Totolian A.A. CXCR3-expressing T cells in infections and autoimmunity. Front. Biosci. (Landmark Ed.), 2024, vol. 29, no. 8: 301. doi: 10.31083/j.fbl2908301
- Santer D.M., Hockman D., Landy A., Tyrrell D.L., Houghton M. Enhanced activation of memory, but not naïve, B-cells in chronic hepatitis C virus–infected patients with cryoglobulinemia and advanced liver fibrosis. PLoS One, 2013, vol. 8, no. 6: e68308. doi: 10.1371/journal.pone.0068308
- Shetty S., Bruns T., Weston C.J., Stamataki Z., Oo Y.H., Long H.M., Reynolds G.M., Pratt G., Moss P., Jalkanen S., Hubscher S.J., Lalor P.F., Adams D.H. Recruitment mechanisms of primary and malignant B-cells to the human liver. Hepatology, 2012, vol. 56, pp. 1521–1531. doi: 10.1002/hep.25790
- Tasleem S., Sood G.K. Hepatitis C–associated B-cell non-Hodgkin lymphoma: clinical features and the role of antiviral therapy. J. Clin. Transl. Hepatol., 2015, vol. 3, no. 2, pp. 134–139. doi: 10.14218/JCTH.2015.00011
- Visco C., Finotto S. Hepatitis C virus and diffuse large B-cell lymphoma: pathogenesis, behavior and treatment. World J. Gastroenterol., 2014, vol. 20, no. 32, pp. 11054–11061. doi: 10.3748/wjg.v20.i32.11054
- Weerakkody Y., Bell D., Rezaee A. METAVIR score. Reference article. Radiopaedia.org, 2025. doi: 10.53347/rID-51855
- World Health Organization. Global Hepatitis Report 2024. World Health Organization, Geneva, 2024, p. 19. doi: 10.9789240091672
- Zignego A.L., Giannini C., Ferri C. Hepatitis C virus-related lymphoproliferative disorders: an overview. World J. Gastroenterol., 2007, vol. 13, no. 17, pp. 2467–2478. doi: 10.3748/wjg.v13.i17.2467
- Zuckerman E. Expansion of CD5+ B-cells overexpressing CD81 in HCV infection: towards better understanding the link between HCV infection, B-cell activation and lymphoproliferation. J. Hepatol., 2003, vol. 38, no. 5, pp. 674–676. doi: 10.1016/S0168-8278(03)00122-3
Supplementary files
