Adaptive NK cells acquire B-lymphocyte CD19 surface marker via trogocytosis during activation of chronic EBV infection
- Authors: Kalashnikova A.A.1, Bychkova N.V.2, Rakityanskaya I.A.3
-
Affiliations:
- The Nikiforov All-Russian Center of Emergency and Radiation Medicine
- National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V.I.Kulakov
- Municipal Outpatient Hospital no. 112
- Issue: Vol 15, No 3 (2025)
- Pages: 589-504
- Section: ORIGINAL ARTICLES
- URL: https://bakhtiniada.ru/2220-7619/article/view/315131
- DOI: https://doi.org/10.15789/2220-7619-ANC-17850
- ID: 315131
Cite item
Full Text
Abstract
In the last decade, there have been reports of NK with low CD19 coexpression in the blood and bone marrow. There is no data on their association with pathology. We have previously shown that CD19+dim NK has an adaptive phenotype. A possible reason for the appearance of CD19 on NK may occur via trogocytosis of B-lymphocytes during active EBV infection. The aim of study is to identify factors contributing to the appearance of a CD56+CD19+dim NK in the peripheral blood of patients with herpes infection. Materials and methods. Blood, saliva, and other biological fluids from 225 patients (34.6±8.5 years, 71% women) were analyzed. Chronic persistent EBV infection was noted in 29%, CMV — in 2.2%, mixed infection — in 10%. IgM to CMV and IgG with avidity were determined in serum; CMV and EBV DNA in biological fluids. Subpopulations of blood lymphocytes were studied by flow cytometry to quantitate CD19+dim NK cell level. In individuals without IgG to CMV, CD19+dim NK were not determined. A relationship was found between the presence of DNA of each virus and the presence of CD19+dim NK cells. The proportion of CD19+dim NK cells peaked at active replication of both viruses and decreased in the absence of CMV replication. Among individuals with mixed infection, cell subpopulation was identified in the group of younger patients with long-term chronic EBV infection. In this group, no significant changes in the content of total immunoglobulins were detected; no diseases in history that suppress an adequate humoral immunity were observed. Among individuals with mixed infection, but without CD19+dim NK cells, a decrease in total immunoglobulins and the presence of diseases leading to altered production of specific immunoglobulins were more often noted. The appearance of CD19+dim NK cells in the blood is facilitated by CMV infection, the presence of long-term chronic EBV infection with activation at the time of the study, and an intact humoral immunity. CD19+dim NK cells are not detected in individuals without IgG to CMV, in the absence of EBV activation, in the presence of diseases that lead to impaired humoral immunity. The appearance of the CD56+CD19+dim NK cells in the blood is a consequence of the participation of adaptive NK cells in the antiviral response with a high level of neutralizing antibodies and a marker of trogocytosis of B-cells that have bound EBV. The possibility of the presence of CD19+dim NK cells in the blood must be taken into account when phenotyping B-cells.
Keywords
Full Text
##article.viewOnOriginalSite##About the authors
Anastasia A. Kalashnikova
The Nikiforov All-Russian Center of Emergency and Radiation Medicine
Author for correspondence.
Email: petkova_nas@mail.ru
PhD (Biology), Senior Researcher, Research Department of Laboratory Diagnostics
Russian Federation, St. PetersburgNataliya V. Bychkova
National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V.I.Kulakov
Email: bnv19692007@yandex.ru
DSc (Biology), Leading Researcher, Laboratory of Clinical Immunology
Russian Federation, MoscowIrina A. Rakityanskaya
Municipal Outpatient Hospital no. 112
Email: tat-akyla@inbox.ru
DSc (Medicine), Professor, Clinical Immunologist, Consultant of the Department of Allergology-Immunology and Clinical Transfusiology
Russian Federation, St. PetersburgReferences
- Дубоносова Е.Ю., Намазова-Баранова Л.С., Вишнева Е.А., Маянский Н.А., Куличенко Т.В., Солошенко М.А. Распространенность цитомегаловирусной инфекции среди подростков в Российской Федерации: результаты одномоментного популяционного анализа серопревалентности // Педиатрическая фармакология. 2021. Т. 18, № 6. С. 451–459. [Dubonosova E.Y., Namazova-Baranova L.S., Vishneva E.A., Mayanskiy N.A., Kulichenko T.V., Soloshenko M.A. Cytomegalovirus infection in adolescents of Russian Federation: results of cross-sectional population analysis of seroprevalence. Pediatricheskaya farmakologiya = Pediatric Pharmacology, 2021, vol. 18, no. 6, pp. 451–459. (In Russ.)] doi: 10.15690/pf.v18i6.2297
- Жебрун А.Б., Куляшова Л.Б., Ермоленко К.Д., Закревская А.В. Распространенность герпесвирусных инфекций у детей и взрослых в С.-Петербурге по данным сероэпидемиологического исследования // Журнал микробиологии, эпидемиологии и иммунобиологии. 2013. № 6. С. 30–36. [Zhebrun A.B., Kulyashova L.B., Ermolenko K.D., Zakrevskaya A.V. Spread of herpesvirus infections in children and adults in St. Petersburg according to seroepidemiologic study data. Zhurnal mikrobiologii, epidemiologii i immunobiologii = Journal of Microbiology, Epidemiology and Immunobiology, 2013, no. 6, pp. 30–36. (In Russ.)]
- Калашникова А.А., Бычкова Н.В. Минорная популяция NK-лимфоцитов с коэкспрессией CD19 // Медицинская иммунология. 2024. Т. 26, № 3. С. 513–522. [Kalashnikova A.A., Bychkova N.V. Minor population of NK lymphocytes with CD19 coexpression. Meditsinskaya Immunologiya = Medical Immunology (Russia), 2024, vol. 26, no. 3, pp. 513–522. (In Russ.)] doi: 10.15789/1563-0625-MPO-2920
- Alari-Pahissa E., Ataya M., Moraitis I., Campos-Ruiz M., Altadill M., Muntasell A., Moles A., López-Botet M. NK cells eliminate Epstein–Barr virus bound to B cells through a specific antibody-mediated uptake. PLoS Pathog., 2021, vol. 17, no. 8: e1009868. doi: 10.1371/journal.ppat.1009868
- Binder C., Cvetkovski F., Sellberg F., Berg S., Paternina Visbal H., Sachs D.H., Berglund E., Berglund D. CD2 Immunobiology. Front. Immunol., 2020, vol. 11: 1090. doi: 10.3389/fimmu.2020.01090
- Bu W., Hayes G.M., Liu H., Gemmell L., Schmeling D.O., Radecki P., Aguilar F., Burbelo P.D., Woo J., Balfour H.H. Jr., Cohen J.I. Kinetics of Epstein–Barr Virus (EBV) Neutralizing and Virus-Specific Antibodies after Primary Infection with EBV. Clin. Vaccine Immunol., 2016, vol. 23, no. 4, pp. 363–369. doi: 10.1128/CVI.00674-15
- Chatterjee G., Sriram H., Ghogale S., Deshpande N., Khanka T., Girase K., Verma S., Arolkar G., Dasgupta N., Narula G., Shetty D., Dhamne C., Moulik N.R., Rajpal S., Patkar N.V., Banavali S., Gujral S., Subramanian P.G., Tembhare P.R. Mimics and artefacts of measurable residual disease in a highly sensitive multicolour flow cytometry assay for B-lymphoblastic leukaemia/lymphoma: critical consideration for analysis of measurable residual disease. Br. J. Haematol., 2022, vol. 196, no. 2, pp. 374–379. doi: 10.1111/bjh.17801
- Coënon L., Villalba M. From CD16a Biology to Antibody-Dependent Cell-Mediated Cytotoxicity Improvement. Front. Immunol., 2022, vol. 13: 913215. doi: 10.3389/fimmu.2022.913215
- Costa-García M., Ataya M., Moraru M., Vilches C., López-Botet M., Muntasell A. Human Cytomegalovirus antigen presentation by HLA-DR+NKG2C+ adaptive NK cells specifically activates polyfunctional effector memory CD4+ T lymphocytes. Front. Immunol., 2019, vol. 10: 687. doi: 10.3389/fimmu.2019.00687
- Davis D.M. Intercellular transfer of cell-surface proteins is common and can affect many stages of an immune response. Nat. Rev. Immunol., 2007, vol. 7, no. 3, pp. 238–243. doi: 10.1038/nri2020
- Erdem G., Cua C.L., Basu A., Lee S., Leber A., Abraham R.S. Asymptomatic COVID-19 Reinfection in a Pediatric Patient with Heterotaxy Syndrome. Viral. Immunol., 2023, vol. 36, no. 2, pp. 144–148. doi: 10.1089/vim.2022.0131
- Erokhina S.A., Streltsova M.A., Kanevskiy M.L., Grechikhina M.V., Sapozhnikov A.M., Kovalenko E.I. HLA-DR-expressing NK cells: Effective killers suspected for antigen presentation. J. Leucoc. Biol., 2021, vol. 109, no. 2, pp. 327–337. doi: 10.1002/JLB.3RU0420-668RR
- Gao F., Zhou Z., Lin Y., Shu G., Yin G., Zhang T. Biology and Clinical Relevance of HCMV-Associated Adaptive NK Cells. Front. Immunol., 2022, vol. 13: 830396. doi: 10.3389/fimmu.2022.830396
- HoWangYin K.-Y.C., Edgardo D., LeMaoult J. Trogocytosis and NK Cells in Mouse and Man. Natural Killer Cells: Springer, 2010, pp. 109–123. doi: 10.1007/978-3-642-02309-5_5
- Korol C., Rossi J., Sanz M., Bernasconi A. NK cells expressing the B cell antigen CD19: Expanding the phenotypical characterization and the potential consequences from misinterpretation of this subset population. Cytometry B Clin. Cytom., 2015, vol. 88, no. 2, pp. 358–360. doi: 10.1002/cyto.b.21257
- Larsen M.D., de Graaf E.L., Sonneveld M.E., Plomp H.R., Nouta J., Hoepel W., Chen H.J., Linty F., Visser R., Brinkhaus M., Šuštić T., de Taeye S.W., Bentlage A.E.H., Toivonen S., Koeleman C.A.M., Sainio S., Kootstra N.A., Brouwer P.J.M., Geyer C.E., Derksen N.I.L., Wolbink G., de Winther M., Sanders R.W., van Gils M.J., de Bruin S., Vlaar A.P.J., Rispens T., den Dunnen J., Zaaijer H.L., Wuhrer M., Ellen van der Schoot C., Vidarsson G. Afucosylated IgG characterizes enveloped viral responses and correlates with COVID-19 severity. Science, 2021, vol. 371, no. 6532: eabc8378. doi: 10.1126/science.abc8378
- Li W., Morgan R., Nieder R., Truong S., Habeebu S.S.M., Ahmed A.A. Normal or reactive minor cell populations in bone marrow and peripheral blood mimic minimal residual leukemia by flow cytometry. Cytometry B Clin. Cytom., 2021, vol. 100, no. 5, pp. 531–608. doi: 10.1002/cyto.b.21968
- Liu L.L., Landskron J., Ask E.H., Enqvist M., Sohlberg E., Traherne J.A., Hammer Q., Goodridge J.P., Larsson S., Jayaraman J., Oei V.Y.S., Schaffer M., Taskén K., Ljunggren H.-G., Romagnani C., Trowsdale J., Malmberg K.-J., Béziat V. Critical Role of CD2 Co-stimulation in Adaptive Natural Killer Cell Responses Revealed in NKG2C-Deficient Humans. Cell Rep., 2016, vol. 15, no. 5, pp. 1088–1099. doi: 10.1016/j.celrep.2016.04.005
- Liu W., Scott J.M., Langguth E., Chang H., Park P.H., Kim S. FcRγ Gene editing reprograms conventional NK cells to display key features of adaptive human NK cells. iScience, 2020, vol. 23, no. 11: 101709. doi: 10.1016/j.isci.2020.101709
- Lopes-Verges S., Milush J.M., Schwartz B.S., Pando M.J., Jarioura J., York V.A., Houchins J.P., Miller S., Kang S.M., Norris P.J., Nixon D.F., Lanier L.L. Expansion of a unique CD57+NKG2C+ natural killer cell subset during acute human cytomegalovirus infection. Proc. Natl Acad. Sci. USA, 2011, vol. 108, no. 36, pp. 14725–14732. doi: 10.1073/pnas.1110900108
- Lopez-Montañés M., Alari-Pahissa E., Sintes J., Martínez-Rodríguez J.E., Muntasell A., López-Botet M. Antibody-dependent NK Cell activation differentially targets EBV-infected cells in lytic cycle and bystander B lymphocytes bound to viral antigen-containing particles. J. Immunol., 2017, vol. 199, no. 2, pp. 656–665. doi: 10.4049/jimmunol.1601574
- Miyake K., Karasuyama H. The Role of Trogocytosis in the Modulation of Immune Cell Functions. Cells, 2021, vol. 10, no. 5: 1255. doi: 10.3390/cells10051255
- Orange J.S., Harris K.E., Andzelm M.M., Valter M.M., Geha R.S., Strominger J.L. The mature activation natural killer cell immunologic synapse is formed in distinct stages. Proc. Natl Acad. Sci. USA, 2003, vol. 100, no. 24, pp. 14151–14156. doi: 10.1073/pnas.1835830100
- Quatrini L., Della Chiesa M., Sivori S., Mingari M.C., Pende D., Moretta L. Human NK cells, their receptors and function. Eur. J. Immunol., 2021, vol. 51, no. 7, pp. 1566–1579. doi: 10.1002/eji.202049028
- Rölle A., Halenius A., Ewen E.M., Cerwenka A., Hengel H., Momburg F. CD2–CD58 interactions are pivotal for the activation and function of adaptive natural killer cells in human cytomegalovirus infection. Eur. J. Immunol., 2016, vol. 46, no. 10, pp. 2420–2425. doi: 10.1002/eji.201646492
- Soma L., Wu D., Chen X., Edlefsen K., Fromm J.R., Wood B. Apparent CD19 expression by natural killers cells: a potential confounder for minimal residual disease detection by flow cytometry in B lymphoblastic leukemia. Cytometry B Clin. Cytom., 2015, vol. 88, no. 2, pp. 145–147. doi: 10.1002/cytob.21179
- Sun J.C., Beilke J.N., Lewis L.L. Adaptive immune feature of natural killer cells. Nature, 2009, vol. 457, no. 7229, pp. 557–561. doi: 10.1038/nature07665
- Taylor R.P., Lindorfer M.A. Fcγ-receptor-mediated trogocytosis impacts mAb-based therapies: historical precedence and recent developments. Blood, 2015, vol. 125, no. 5, pp. 762–766. doi: 10.1182/blood-2014-10-569244
- Weiss E.R., Alter G., Ogembo J.G., Henderson J.L., Tabak B., Bakiş Y., Somasundaran M., Garber M., Selin L., Luzuriaga K. High Epstein–Barr Virus Load and Genomic Diversity Are Associated with Generation of gp350-Specific Neutralizing Antibodies following Acute Infectious Mononucleosis. J. Virol., 2016, vol. 91, no. 1: e01562-16. doi: 10.1128/JVI.01562-16
- Wensveen F.M., Jelenčić V., Polić B. NKG2D: A Master Regulator of Immune Cell Responsiveness. Front. Immunol., 2018, vol. 9: 441. doi: 10.3389/fimmu.2018.00441
- Zhang T., Scott J.M., Hwang I., Kim S. Cutting Edge: Antibody-Dependent Memory-Like NK Cells Distinguished by Fcrgamma Deficiency. J. Immunol., 2013, vol. 190, no. 4, pp. 1402–1406. doi: 10.4049/jimmunol.1203034
Supplementary files
