Ранние фазы туберкулезной инфекции: иммунный ответ и генетический контроль хозяина
- Авторы: Кондратьева Т.К.1, Кондратьева Е.В.1, Апт А.С.1
-
Учреждения:
- ФГБНУ Центральный научно-исследовательский институт туберкулеза
- Выпуск: Том 15, № 3 (2025)
- Страницы: 431-445
- Раздел: ОБЗОРЫ
- URL: https://bakhtiniada.ru/2220-7619/article/view/315127
- DOI: https://doi.org/10.15789/2220-7619-EPO-17880
- ID: 315127
Цитировать
Полный текст
Аннотация
Туберкулез (ТБ), прежде всего легочный, продолжает оставаться серьезной проблемой для здравоохранения, несмотря на интенсивные исследования патогенеза болезни, разработку и проверку новых лекарств и попытки создать новые вакцины против ТБ. Одной из причин столь медленного прогресса в решении задачи эффективного контроля за распространением этой инфекции и повышения эффективности ее профилактики и лечения признается недостаток фундаментальных знаний о механизмах иммунного ответа на инфекцию, генетического контроля этого ответа и ключевых дефектах, не позволяющих зараженному хозяину справится с прогрессированием болезни. В первую очередь, недостаток наших знаний касается ранних фаз инфекции, поскольку в обычной клинической практике врачи практически с ними не встречаются, а многие существующие экспериментальные модели ТБ на животных не вполне адекватно отражают события, происходящие в зараженных M. tuberculosis легких у человека. В этом обзоре мы кратко рассматриваем некоторые нерешенные проблемы иммунологии и генетики туберкулезной инфекции со специфическим акцентом на первый месяц развития инфекции. Описывается взаимодействие микобактерий с разными типами фагоцитов в легочной ткани и последствия захвата микобактерий альвеолярными и интерстициальными макрофагами, нейтрофилами, эозинофилами и дендритными клетками. Обсуждаются вопросы классификации туберкулезных гранулем, их функциональное разнообразие различия во взглядах на природу первичных очагов туберкулезной инфекции иммунологов и патологов. В заключительном разделе обзора особое внимание уделено последовательности включения в иммунный ответ против микобактерий реакций врожденного и адаптивного иммунитета, а также регуляции взаимодействия между нейтрофилами и Т-лимфоцитами при туберкулезе. На основании собственных данных о динамике развития иммунного ответа и экспрессии на Т-клетках CD4+ маркеров активации и ингибирования ответа при экспериментальном туберкулезе у мышей, отличающихся по аллелям MHC II, обсуждаются ключевые различия между генетически чувствительными и резистентными к инфекции животными.
Ключевые слова
Полный текст
Открыть статью на сайте журналаОб авторах
Татьяна Константиновна Кондратьева
ФГБНУ Центральный научно-исследовательский институт туберкулеза
Автор, ответственный за переписку.
Email: tanya.kondratieva.47@mail.ru
д.б.н., ведущий научный сотрудник лаборатории иммуногенетики отдела иммунологии
Россия, МоскваЕлена Валерьевна Кондратьева
ФГБНУ Центральный научно-исследовательский институт туберкулеза
Email: alyonakondratyeva74@gmail.com
к.б.н., старший научный сотрудник лаборатории иммуногенетики отдела иммунологии
Россия, МоскваАлександр Соломонович Апт
ФГБНУ Центральный научно-исследовательский институт туберкулеза
Email: alexapt0151@gmail.com
д.б.н., профессор, зав. лабораторией иммуногенетики отдела иммунологии
Россия, МоскваСписок литературы
- Линге И.А., Апт А.С. Нейтрофилы: неоднозначная роль в патогенезе туберкулеза // Инфекция и иммунитет. 2021. Т. 11, № 5. C. 809–819. [Linge I.A., Apt A.S. A controversial role of neutrophils in tuberculosis infection pathogenesis. Infektsiya i immunitet = Russian Journal of Infection and Immunity, 2021, vol. 11, no. 5, pp. 809–819. (In Russ.)] doi: 10.15789/2220-7619-ACR-1670
- Майоров К.Б., Григоров А.С., Кондратьева Е.В., Ажикина Е.Л., Апт А.С. Получение Mycobacterium tuberculosis после фагоцитоза нейтрофилами in vivo для генетического и функционального анализа // Вестник ЦНИИТ. 2020. Т. 2, № 2. С. 30–35. [Majorov K.B., Grigorov A.S., Kondratieva E.V., Azhikina T.L., Apt A.S. Extraction of Mycobacterium tuberculosis after in vivo phagocytosis by neutrophils for further genetic and functional analyses. Vestnik TsNIIT = CRTI Bulletin 2020, vol. 2, no. 2, pp. 30–35. (In Russ.)] doi: 10.7868/S2587667820020041
- Abu Toamih Atamni H., Nashef A., Iraqi F.A. The collaborative cross mouse model for dissecting genetic susceptibility to infectious diseases. Mamm. Genome, 2018, vol. 29, no. 7–8, pp. 471–487. doi: 10.1007/s00335-018-9768-1
- Alvarez D., Vollmann E.H., von Andrian U.H. Mechanisms and consequences of dendritic cell migration. Immunity, 2008, vol. 29, no. 3, pp. 325–342. doi: 10.1016/j.immuni.2008.08.006
- Apt A.S. Are mouse models of human mycobacterial diseases relevant? Genetics says: ‘yes!’. Immunology, 2011, vol. 134, no. 2, pp. 109–115. doi: 10.1111/j.1365-2567.2011.03472.x
- Apt A.S., Logunova N.N., Kondratieva T.K. Host genetics in susceptibility to and severity of mycobacterial diseases. Tuberculosis (Edinb.), 2017, vol. 106, no. 1, pp. 1–8. doi: 10.1016/j.tube.2017.05.004
- Apt A., Kramnik I. Man and mouse TB: contradictions and solutions. Tuberculosis (Edinb.), 2009, vol. 89, no. 3, pp. 195–198. doi: 10.1016/j.tube.2009.02.002
- Balasubramanian V., Wiegeshaus E.H., Taylor B.T., Smith D.W. Pathogenesis of tuberculosis: pathway to apical localization. Tuber. Lung Dis., 1994, vol. 75, no. 3, pp. 168–178. doi: 10.1016/0962-8479(94)90002-7
- Basaraba R.J., Hunter R.L. Pathology of tuberculosis: How the pathology of human tuberculosis informs and directs animal models. Microbiol. Spectr., 2017, vol. 5: 5. doi: 10.1128/microbiolspec.TBTB2-0029-2016
- Bermudez L.E., Goodman J. Mycobacterium tuberculosis invades and replicates within type II alveolar cells. Infect. Immun., 1996, vol. 64, no. 4, pp. 1400–1406. doi: 10.1128/iai.64.4.1400-1406.1996
- Bermudez L.E., Sangari F.J., Kolonoski P., Petrofsky M., Goodman J. The efficiency of the translocation of Mycobacterium tuberculosis across a bilayer of epithelial and endothelial cells as a model of the alveolar wall is a consequence of transport withinmononuclear phagocytes and invasion of alveolar epithelial cells. Infect. Immun., 2002, vol. 70, no. 1, pp. 140–146. doi: 10.1128/IAI.70.1.140-146.2002
- Bhattacharya J., Westphalen K. Macrophage-epithelial interactions in pulmonary alveoli. Semin. Immunopathol., 2016, vol. 38, no. 4, pp. 461–469. doi: 10.1007/s00281-016-0569-x
- Blum J.S., Wearsch P.A., Cresswell P. Pathways of antigen processing. Annu. Rev. Immunol., 2013, vol. 31, pp. 443–473. doi: 10.1146/annurev-immunol-032712-095910
- Bohrer A.C., Castro E., Hu Z., Queiroz A.T. L., Tocheny C.E., Assmann M., Sakai S., Nelson C., Baker P.J., Ma H., Wang L., Zilu W., du Bruyn E., Riou C., Kauffman K.D.; Tuberculosis Imaging Program; Moore I.N., Del Nonno F., Petrone L., Goletti D., Martineau A.R., Lowe D.M., Cronan M.R., Wilkinson R.J., Barry C.E., Via L.E., Barber D.L., Klion A.D., Andrade B.B., Song Y., Wong K.W., Mayer-Barber K.D. Eosinophils are part of the granulocyte response in tuberculosis and promote host resistance in mice. J. Exp. Med., 2021, vol. 218: e20210469. doi: 10.1084/jem.20210469
- Bohrer A.C., Castro E., Tocheny C.E., Assmann M., Schwarz B., Bohrnsen E. Rapid Gpr183-mediated recruitment of eosinophils to the lung after mycobacterium tuberculosis infection. Cell. Rep., 2022, vol. 40: 111144. doi: 10.1016/j.celrep.2022.111144
- Borkute R.R., Woelke S., Pei G., Dorhoi A. Neutrophils in tuberculosis: cell biology, cellular networking and multitasking in host defense. Int. J. Mol. Sci., 2021, vol. 22, no. 9: 4801. doi: 10.3390/ijms22094801
- Bromley J.D., Ganchua S.K.C., Nyquist S.K., Maiello P., Chao M., Borish H.J., Rodgers M., Tomko J., Kracinovsky K., Mugahid D., Nguyen S., Wang Q.D., Rosenberg J.M., Klein E.C., Gideon H.P., Floyd-O’Sullivan R., Berger B., Scanga C.b A., Lin P.b L., Fortune S.M., Shalek A.K., Flynn J.L. CD4+ T cells re-wire granuloma cellularity and regulatory networks to promote immunomodulation following Mtb reinfection. Immunity, 2024, vol. 57, no. 10, pp. 2380–2398.e6. doi: 10.1016/j.immuni.2024.08.002
- Cadena A.M., Fortune S.M., Flynn J.L. Heterogeneity in tuberculosis. Nat. Rev. Immunol., 2017, vol. 17, no. 11, pp. 691–702. doi: 10.1038/nri.2017.69
- Cadena A.M., Flynn J.L., Fortune S.M. The importance of first impressions: early events in Mycobacterium tuberculosis infection influence outcome. mBio, 2016, vol. 7, no. 2: e00342-16. doi: 10.1128/mBio.00342-16
- Capuano S.V. 3rd, Croix D.A., Pawar S., Zinovik A., Myers A., Lin P.L., Bissel S., Fuhrman C., Klein E., Flynn J.L. Experimental Mycobacterium tuberculosis infection of cynomolgus macaques closely resembles the various manifestations of human M. tuberculosis infection. Infect. Immun., 2003, vol. 71, no. 10, pp. 5831–5844. doi: 10.1128/IAI.71.10.5831-5844.2003
- Carow B., Hauling T., Qian X., Kramnik I., Nilsson M., Rottenberg M.E. Spatial and temporal localization of immune transcripts defines hallmarks and diversity in the tuberculosis granuloma. Nat. Commun., 2019, vol. 10, no. 1: 1823. doi: 10.1038/s41467-019-09816-4
- Cidem A., Bradbury P., Traini D., Ong H.X. Modifying and integrating in vitro and ex vivo respiratory models for inhalation drug screening. Front. Bioeng. Biotechnol., 2020, vol. 8: 581995. doi: 10.3389/fbioe.2020.581995
- Corleisa B., Dorhoi A. Early dynamics of innate immunity during pulmonary tuberculosis. Immunol. Lett., 2020, vol. 221, pp. 56–60. doi: 10.1016/j.imlet.2020.02.010
- Correa-Macedo W., Cambri G., Schurr E. The interplay of human and Mycobacterium tuberculosis genomic variability. Front. Genet., 2019, vol. 10: 865. doi: 10.3389/fgene.2019.00865
- Dallenga T., Repnik U., Corleis B., Eich J., Reimer R., Griffiths G.W., Schaible U.E. Tuberculosis-induced necrosis of infected neutrophils promotes bacterial growth following phagocytosis by macrophages. Cell Host Microbe, 2017, vol. 22, no. 4, pp. 519–530 e3. doi: 10.1016/j.chom.2017.09.003
- Dallmann-Sauer M., Fava V.M., Malherbe S.T., MacDonald C.E., Orlova M., Kroon E.E., Cobat A., Boisson-Dupuis S., Hoal E.G., Abel L., Möller M., Casanova J.L., Walzl G., Du Plessis N., Schurr E. Mycobacterium tuberculosis resisters despite HIV exhibit activated T cells and macrophages in their pulmonary alveoli. J. Clin. Invest., 2025: e188016. doi: 10.1172/JCI188016
- De Waal A.M., Hiemstra P.S., Ottenhoff T.H. M., Joosten A., van der Does A M. Lung epithelial cells interact with immune cells and bacteria to shape the microenvironment in tuberculosis. Thorax, 2022, vol. 77, no. 4, pp. 408–416. doi: 10.1136/thoraxjnl-2021-217997
- Donald P.R., Diacon A.H., Lange C., Demers A.M., von Groote-Bidlingmaier F., Nardell E. Droplets, dust and guinea pigs: an historical review of tuberculosis transmission research, 1878–1940. Int. J. Tuberc. Lung Dis., 2018, vol. 22 no. 9, pp. 972–982. doi: 10.5588/ijtld.18.0173
- Dyatlov A.V., Apt A.S., Linge I.A. B lymphocytes in anti-mycobacterial immune responses: Pathogenesis or protection? Tuberculosis (Edinb.), 2019, vol. 114, no. 1, pp. 1–8. doi: 10.1016/j.tube.2018.10.011
- Eruslanov E. B, Lyadova I. V, Kondratieva T.K., Majorov K.B., Scheglov I.V., Orlova M.O., Apt A.S. Neutrophil responses to Mycobacterium tuberculosis infection in genetically susceptible and resistant mice. Infect. Immun., 2005, vol. 73, no. 3, pp. 1744–1753. doi: 10.1128/IAI.73.3.1744-1753.2005
- Eum S.Y., Kong J.H., Hong M.S., Lee Y.J., Kim J.H., Hwang S.H., Cho S.N., Via L.E., Barry C.F. 3rd. Neutrophils are the predominant infected phagocytic cells in the airways of patients with active pulmonary TB. Chest, 2010, vol. 137, no. 1, pp. 122–128. doi: 10.1378/chest.09-0903
- Flynn J.L., Chan J. Immune cell interactions in tuberculosis. Cell, 2022, vol. 185, no. 25, pp. 4682–4702. doi: 10.1016/j.cell.2022.10.025
- Forbes J.R., Gros P. Iron, manganese, and cobalt transport by Nramp1 (Slc11a1) and Nramp2 (Slc11a2) expressed at the plasma membrane. Blood, 2003, vol. 102, no. 5, pp. 1884–1892. doi: 10.1182/blood-2003-02-0425
- Gideon H.P., Hughes T.K., Tzouanas C.N., Wadsworth M.H., Tu A.A., Gierahn T.M., Peters J.M., Hopkins F.F., Wei J.-R., Kummerlowe C. Multimodal profiling of lung granulomas in macaques reveals cellular correlates of tuberculosis control. Immunity, 2022, vol. 55, no. 5, pp. 827–846.e10. doi: 10.1016/j.immuni.2022.04.004
- Gill A.M. Eosinophilia in tuberculosis. BMJ, 1940, vol. 17, pp. 220–221. doi: 10.1136/bmj.2.4154.220
- Grant A.V., Sabri A., Abid A., Abderrahmani Rhorfi I., Benkirane M. , Souhi H., Naji Amrani H., Alaoui-Tahiri K., Gharbaoui Y., Lazrak F., Sentissi I., Manessouri M., Belkheiri S., Zaid S., Bouraqadi A., El Amraoui N., Hakam M., Belkadi A., Orlova M., Boland A., Deswarte C., Amar L., Bustamante J., Boisson-Dupuis S., Casanova J.L., Schurr E., El Baghdadi J., Abel L. A genome-wide association study of pulmonary tuberculosis in Morocco. Hum. Genet., 2016, vol. 135. no. 3, pp. 299–307. doi: 10.1007/s00439-016-1633-2
- Guilliams M., Lambrecht B.N., Hammad H. Division of labor between lung dendritic cells and macrophages in the defense against pulmonary infections. Mucosal. Immunol., 2013, vol. 6, no. 3, pp. 464–473. doi: 10.1038/mi.2013.14
- Gutierrez M.C., Brisse S., Brosch R., Fabre M., Omaïs B., Marmiesse M., Supply P., Vincent V. Ancient origin and gene mosaicism of the pro genitor of mycobacterium tuberculosis. PLoS Pathog., 2005, vol. 1, no. 1: e5. doi: 10.1371/journal.ppat.0010005
- Hashimoto D., Chow A., Noizat C., Teo P., Beasley M.B., Leboeuf M., Becker C.D., See P., Price J., Lucas D., Greter M., Mortha A., Boyer S.W., Forsberg E.C., Tanaka M., van Rooijen N., García-Sastre A., Stanley E.R., Ginhoux F., Frenette P.S, Merad M. Tissue-resident macrophages self-maintain locally throughout adult life with minimal contribution from circulating monocytes. Immunity, 2013, vol. 38, no. 4, pp. 792–804. doi: 10.1016/j.immuni.2013.04.004
- Hoeffel G., Chen J., Lavin Y., Low D., Almeida F.F., See P., Beaudin A.E., Lum J., Low I., Forsberg E.C., Poidinger M., Zolezzi F., Larbi A., Ng L.G., Chan J.K., Greter M., Becher B., Samokhvalov I.M., Merad M., Ginhoux F. C-Myb(+) erythro-myeloid progenitor-derived fetal monocytes give rise to adult tissue-resident macrophages. Immunity, 2015, vol. 42, no. 4, pp. 665–678. doi: 10.1016/j.immuni.2015.03.011
- Hoeffel G., Ginhoux F. Fetal monocytes and the origins of tissue-resident macrophages. Cell. Immunol., 2018, vol. 330, pp. 5–15. doi: 10.1016/j.cellimm.2018.01.001
- Huang L., Nazarova E.V., Tan S., Liu Y., Russell D.G. Growth of Mycobacterium tuberculosis in vivo segregates with host macrophage metabolism and ontogeny. J. Exp. Med., 2018, vol. 215, no. 4, pp. 1135–1152. doi: 10.1084/jem.20172020
- Hunter R.L. The pathogenesis of tuberculosis — The Koch phenomenon reinstated. Pathogens, 2020, vol. 9, no. 10: 813. doi: 10.3390/pathogens9100813
- Iakobachvili N., Leon-Icaza S.A., Knoops K., Sachs N., Mazères S., Simeone R., Peixoto A., Bernard C., Murris-Espin M., Mazières J., Cam K., Chalut C., Guilhot C., López-Iglesias C., Ravelli R.B., Neyrolles J., Meunier E., Lugo-Villarino G., Clevers H., Cougoule C., Peters P.J. Mycobacteria–host interactions in human bronchiolar airway organoids. Mol. Microbiol., 2022, vol. 117, no. 3, pp. 682–692. doi: 10.1111/mmi.14824
- Ji D.X., Witt K.C., Kotov D.I., Margolis S.R., Louie A., Chevée V., Chen K.J., Gaidt M.M., Dhaliwal H.S., Lee A.Y., Nishimura S.L., Zamboni D.S., Kramnik I., Portnoy D.A., Darwin K.H., Vance R.E. Role of the transcriptional regulator SP140 in resistance to bacterial infections via repression of type I interferons. Elife, 2021, vol. 10: e67290. doi: 10.7554/eLife.67290
- Kawasaki T., Ikegawa M., Kawai T. Antigen presentation in the lung. Front. Immunol., 2022, vol. 13: 860915. doi: 10.3389/fimmu.2022.860915
- Khan N., Vidyarthi A., Pahari S., Agrewala J.N. Distinct strategies employed by dendritic cells and macrophages in restricting mycobacterium tuberculosis infection: different philosophies but same desire. Int. Rev. Immunol., 2016, vol. 35, no. 5, pp. 386–398. doi: 10.3109/08830185.2015.1015718
- Klion A.D., Ackerman S.J., Bochner B.S. Contributions of eosinophils to human health and disease. Annu. Rev. Pathol., 2020, vol. 15, pp. 179–209. doi: 10.1146/annurev-pathmechdis-012419-032756
- Kondratieva E., Logunova N., Majorov K., Averbakh M., Apt A. Host genetics in granuloma formation: human-like lung pathology in mice with reciprocal genetic susceptibility to M. tuberculosis and M. avium. PLoS One, 2010, vol. 5: e10515. doi: 10.1371/journal.pone.0010515
- Kondratieva E., Majorov K., Grigorov A., Skvortsova Y., Kondratieva T., Rubakova E., Linge I., Azhikina T., Apt A. An in vivo model of separate M. tuberculosis phagocytosis by neutrophils and macrophages: gene expression profiles in the parasite and disease development in the mouse host. Int. J. Mol. Sci., 2022, vol. 23, no. 6: 2961. doi: 10.3390/ijms23062961
- Kramnik I. Genetic dissection of host resistance to Mycobacterium tuberculosis: the sst1 locus and the Ipr1 gene. Curr. Top. Microbiol. Immunol., 2008, vol. 321, pp. 123–148. doi: 10.1007/978-3-540-75203-5_6
- Kramnik I., Beamer G. Mouse models of human TB pathology: roles in the analysis of necrosis and the development of host-directed therapies. Semi. Immunopathol., 2016, vol. 38, no. 2, pp. 221–237. doi: 10.1007/s00281-015-0538-9
- Lavin Y., Mortha A., Rahman A., Merad M. Regulation of macrophage development and function in peripheral tissues. Nat. Rev. Immunol., 2015, vol. 15, no. 12, pp. 731–744. doi: 10.1038/nri3920
- Leu J.S., Chen M.L., Chang S.Y., Yu S.L., Lin C.W., Wang H., Chen W.C., Chang C.H. , Wang J.Y., Lee L.N., Yu C.J., Kramnik I., Yan B.S. SP110b сontrols host immunity and susceptibility to tuberculosis. Am. J. Respir. Crit. Care Med., 2017, vol. 195, no. 3, pp. 369–382. doi: 10.1164/rccm.201601-0103OC
- Lin P.L., Ford C.B., Coleman M.T., Myers A.J., Gawande R., Ioerger T., Sacchettini J., Fortune S.M., Flynn J.L. Sterilization of granulomas is common in active and latent tuberculosis despite within-host variability in bacterial killing. Nat. Med., 2014, vol. 20, no. 1, pp. 75–79. doi: 10.1038/nm.3412
- Linge I., Dyatlov A., Kondratieva E., Avdienko V., Apt A., Kondratieva T. B-lymphocytes forming follicle-like structures in the lung tissue of tuberculosis-infected mice: dynamics, phenotypes and functional activity. Tuberculosis (Edinb.), 2017, vol. 102, pp. 16–23. doi: 10.1016/j.tube.2016.11.005
- Linge I., Kondratieva T., Apt A. B-cell follicles in tuberculous lung: active defenders or modest bystanders? Immunology, 2023, vol. 169, no. 4, pp. 515–518. doi: 10.1111/imm.13657
- Logunova N.N., Kapina M.A., Dyatlov A.V., Kondratieva T.K., Rubakova E.V., Majorov K.B., Kondratieva E.V., Linge I.A., Apt A.S. Polygenic TB control and the sequence of innate/adaptive immune responses to infection: MHC-II alleles determine the size of the S100A8/9-producing neutrophil population. Immunology, 2024, vol. 173, no. 2, pp. 381–393. doi: 10.1111/imm.13836
- Logunova N.N., Kapina M.A., Kondratieva E.V., Apt A.S. The H2-A Class II molecule α/β-chain cis-mismatch severely affects cell surface expression, selection of conventional CD4+ T cells and protection against TB infection. Front. Immunol., 2023, vol. 14: 1183614. doi: 10.3389/fimmu.2023.1183614. doi: 10.3389/fimmu.2023.1183614
- Logunova N.N., Kriukova V.V., Shelyakin P.V., Egorov E.S., Pereverzeva A., Bozhanova N.G., Shugay M., Shcherbinin D.S., Pogorelyy M.V., Merzlyak E.M., Zubov V.N., Meiler J., Chudakov D.M., Apt A.S., Britanova O.V. MHC-II alleles shape the CDR3 repertoires of conventional and regulatory naïve CD4+ T cells. Proc. Natl Acad. Sci. USA, 2020, vol. 117, no. 24, pp. 13659–13669. doi: 10.1073/pnas.2003170117
- Logunova N., Kapina M., Kriukova V., Britanova O., Majorov K., Linge I., Apt A. Susceptibility to and severity of tuberculosis infection in mice depends upon MHC-II-determined level of activation-inhibition balance in CD4 T-cells. Immunology, 2025. (In press)
- Logunova N., Korotetskaya M., Polshakov V., Apt A. The QTL within the H2 complex involved in the control of tuberculosis infection in mice is the classical class II H2-Ab1 gene. PLoS Genet., 2015, vol. 11: e1005672. doi: 10.1371/journal.pgen.1005672
- Lowe D.M., Redford P.S., Wilkinson R J., O’Garra A., Martineau A.R. Neutrophils in tuberculosis: friend or foe? Trends Immunol., 2012, vol. 33. no. 1, pp. 14–25. doi: 10.1016/j.it.2011.10.003
- Lyu J., Narum D.E., Baldwin S.L., Larsen S.E., Bai X., Griffith D.E., Dartois V., Naidoo T., Steyn A.J. C., Coler R.N., Chan E.D. Understanding the development of tuberculous granulomas: insights into host protection and pathogenesis, a review in humans and animals. Front. Immunol., 2024, vol. 15: 1427559. doi: 10.3389/fimmu.2024.1427559
- Majorov K.B., Lyadova I.V., Kondratieva T.K., Eruslanov E.B., Rubakova E.I., Orlova M.O., Mischenko V.V., Apt A.S. Different innate ability of I/St and A/Sn mice to combat virulent Mycobacterium tuberculosis: phenotypes expressed in lung and extrapulmonary macrophages. Infect. Immun., 2003, vol. 71, no. 2, pp. 697–707. doi: 10.1128/IAI.71.2.697-707.2003
- McCaffrey E.F., Donato M., Keren L., Chen Z., Delmastro A., Fitzpatrick M.B., Gupta S., Greenwald N.F., Baranski A. , Graf W., Kumar R., Bosse M., Fullaway C.C., Ramdial P.K., Forgó E., Jojic V., Van Valen D., Mehra S., Khader S.A., Bendall S.C., van de Rijn M., Kalman D., Kaushal D., Hunter R.L., Banaei N., Steyn A.J., Khatri P., Angelo M. The immunoregulatory landscape of human tuberculosis granulomas. Nat. Immunol., 2022, vol. 23, no. 2, pp. 318–329. doi: 10.1038/s41590-021-01121-x
- McDonough K.A., Kress Y. Cytotoxicity for lung epithelial cells is a virulence-associated phenotype of Mycobacterium tuberculosis. Infect. Immun., 1995, vol. 63, no. 12, pp. 4802–4811. doi: 10.1128/iai.63.12.4802-4811.1995
- Meade R.K., Smith C.M. Immunological roads diverged: mapping tuberculosis outcomes in mice. Trends Microbiol., 2025, vol. 33, no. 1, pp. 15–33. doi: 10.1016/j.tim.2024.06.007
- Mihret A. The role of dendritic cells in mycobacterium tuberculosis infection. Virulence 2012, vol. 3, no. 7, pp. 654–659. doi: 10.4161/viru.22586
- Mischenko V.V., Kapina M.A., Eruslanov E.B., Kondratieva E.V., Lyadova I.V., Young D.B., Apt A.S. Mycobacterial dissemination and cellular responses after 1-lobe restricted tuberculosis infection of genetically susceptible and resistant mice. J. Infect. Dis., 2004, vol. 190, no. 12, pp. 2137–2145. doi: 10.1086/425909
- Muefong C.N., Sutherland J.S. Neutrophils in tuberculosis-associated inflammation and lung pathology. Front. Immunol., 2020, vol. 11: 962. doi: 10.3389/fimmu.2020.00962
- Nandi B., Behar S.M. Regulation of neutrophils by interferon γ limits lung inflammation during tuberculosis infection. J. Exp. Med., 2011, vol. 208, no. 11, pp. 2251–2262. doi: 10.1084/jem.20110919
- Nardell E.A. Transmission and institutional infection control of tuberculosis. Cold Spring Harb. Perspect. Med., 2015, vol. 6, no. 2: a018192. doi: 10.1101/cshperspect.a018192
- Niazi M.K., Dhulekar N., Schmidt D., Major S., Cooper R., Abeijon C., Gatti D.M., Kramnik I., Yener B., Gurcan M., Beamer G. Lung necrosis and neutrophils reflect common pathways of susceptibility to Mycobacterium tuberculosis in genetically diverse, immune-competent mice. Dis. Model. Mech., 2015, vol. 8, no. 9, pp. 1141–1153. doi: 10.1242/dmm.020867
- O’Grady F., Riley R.L. Experimental airborne tuberculosis. Adv. Tuberc. Rev., 1963, vol. 12, pp. 150–190.
- Padilla-Carlin D.J., McMurray D.N., Hickey A.J. The guinea pig as a model of infectious diseases. Comp. Med., 2008, vol. 58, no. 4, pp. 324–340.
- Pai S., Muruganandah V., Kupz A. What lies beneath the airway mucosal barrier? Throwing the spotlight on antigen-presenting cell function in the lower respiratory tract. Clin. Transl. Immunology, 2020, vol. 9, no. 7: e1158. doi: 10.1002/cti2.1158
- Peters М., Peters K., Bufens A. Regulation of lung immunity by dendritic cells: Implications for asthma, chronic obstructive pulmonary disease and infectious disease. Innate Immun., 2019, vol. 25, no. 6, pp. 326–336. doi: 10.1177/1753425918821732
- Pisu D. Huang L., Narang V., Theriault M., Lê-Bury G., Lee B., Lakudzala A.E., Mzinza D.T., Mhango D.V., Mitini-Nkhoma S.C., Jambo K.C., Singhal A., Mwandumba H.C., Russell D.G. Single cell analysis of M. tuberculosis phenotype and macrophage lineages in the infected lung. J. Exp. Med., 2021, vol. 218, no. 9: e20210615. doi: 10.1084/jem.20210615
- Pisu D., Johnston L., Mattila J.T., Russell D.G. The frequency of CD38+ alveolar macrophages correlates with early control of M. tuberculosis in the murine lung. Nature Communications 2024, vol. 15, no. 1: 8522. doi: 10.1038/s41467-024-52846-w
- Plumlee C.R., Barrett H.W., Shao D.E., Lien K.A., Cross L.M. , Cohen S.B., Edlefsen P.T., Urdahl K.B. Assessing vaccine-mediated protection in an ultra-low dose Mycobacterium tuberculosis murine model. PLoS Pathog., 2023, vol. 19, no. 11: e1011825. doi: 10.1371/journal.ppat.1011825
- Plumlee C.R., Duffy F.J., Gern B.H., Delahaye J.L., Cohen S.B., Stoltzfus C.R., Rustad T.R., Hansen S.G., Axthelm M.K., Picker L.J., Aitchison J.D., Sherman D.R., Ganusov V.V., Gerner M.Y., Zak D.E., Urdahl K.B. Ultra-low dose aerosol infection of mice with Mycobacterium tuberculosis more closely models human tuberculosis. Cell Host Microbe, 2021, vol. 29, no. 1, pp. 68–82.e5. doi: 10.1016/j.chom.2020.10.003
- Reiley W.W., Calayag M.D., Wittmer S.T., Huntington J.L., Pearl J.E., Fountain J.J., Martino C.A., Roberts A.D., Cooper A.M., Winslow G.M., Woodland D.L. ESAT-6-specific CD4 T cell responses to aerosol Mycobacterium tuberculosis infection are initiated in the mediastinal lymph nodes. Proc. Natl Acad. Sci. USA, 2008, vol. 105, no. 31, pp. 10961–10966. doi: 10.1073/pnas.0801496105
- Reuschl A.-K., Edwards M.R., Parker R., Connell D.W., Hoang L., Halliday A., Jarvis H., Siddiqui N., Wright C., Bremang S., Newton S.M., Beverley P., Shattock R.J., Kon O.M., Lalvani A. Innate activation of human primary epithelial cells broadens the host response to Mycobacterium tuberculosis in the airways. PLoS Pathog., 2017, vol. 13: e1006577–26. doi: 10.1371/journal.ppat.1006577
- Riley R.L., Mills C.C., Nyka W., Weinstock N., Storey P.B., Sultan L.U., Riley M.C., Wells W.F. Aerial dissemination of pulmonary tuberculosis. A two year study of contagion in a tuberculosis ward. Am. J. Hyg., 1959, vol. 70, pp. 185–196.
- Russell D.G., Simwela N.V., Mattila J.T., Flynn J., Mwandumba H.C. , Pisu D. How macrophage heterogeneity affects tuberculosis disease and therapy. Nat. Rev. Immunol., 2025. doi: 10.1038/s41577-024-01124-3
- Ryndak M.B., Chandra D., Laal S. Understanding dissemination of Mycobacterium tuberculosis from the lungs during primary infection. J. Med. Microbiol., 2016, vol. 65, no. 5, pp. 362–369. doi: 10.1099/jmm.0.000238
- Saini D., Hopkins G.W., Seay S.A., Chen C.J., Perley C.C., Click E.M., Frothingham R. Ultra-low dose of Mycobacterium tuberculosis aerosol creates partial infection in mice. Tuberculosis (Edinb.), 2012, vol. 92, no. 2, pp. 160–165. doi: 10.1016/j.tube.2011.11.007
- Sankar P., Mishra B.B. Early innate cell interactions with Mycobacterium tuberculosis in protection and pathology of tuberculosis. Front. Immunol., 2023, vol. 14: 1260859. doi: 10.3389/fimmu.2023.1260859
- Sawyer A.J., Patrick E., Edwards J., Wilmott J.S., Fielder T., Yang Q., Barber D.L., Ernst J.D., Britton W.J., Palendira U., Chen X., Feng C.G. Spatial mapping reveals granuloma diversity and histopathological superstructure in human tuberculosis. J. Exp. Med., 2023, vol. 220, no. 6: e20221392. doi: 10.1084/jem.20221392
- Sutherland J.S., Jeffries D.J., Donkor S., Walther B., Hill P.C., Adetifa I.M., Adegbola R.A., Ota M.O. High Granulocyte/Lymphocyte ratio and paucity of NKT cells defines tb disease in a tb-endemic setting. Tuberculosis (Edinb.), 2009, vol. 89, no. 6, pp. 398–404. doi: 10.1016/j.tube.2009.07.004
- Tian T., Woodworth J., Skold M., Behar S.M. In vivo depletion of Cd11c+ cells delays the Cd4+ t-cell response to Мycobacterium tuberculosis and exacerbates the outcome of infection. J. Immunol., 2005, vol. 175, no. 5, pp. 3268–3272. doi: 10.4049/jimmunol.175.5.3268
- Ulrichs T., Kosmiadi G.A., Trusov V., Jörg S., Pradl L.,Titukhina M., Mishenko V., Gushina N., Kaufmann S.H. E. Human tuberculous granulomas induce peripheral lymphoid follicle-like structures to orchestrate local host defense in the lung. J. Pathol., 2004, vol. 204, no. 2, pp. 217–228. doi: 10.1002/path.1628
- Urdahl K.B. Understanding and overcoming the barriers to T cell-mediated immunity against tuberculosis. Semin. Immunol., 2014, vol. 26, no. 6, pp. 578–587. doi: 10.1016/j.smim.2014.10.003
- Verissimo L., Castro F.C., Muñoz-Mérida A., Almeida T., Gaigher A., Neves F., Flajnik M.F., Ohta Y. An ancestral Major Histocompatibility Complex organization in cartilaginous fish: reconstructing MHC origin and evolution. Mol. Biol. Evol., 2023, vol. 40, no. 12: msad262. doi: 10.1093/molbev/msa
- Via L.E., Lin P.L., Ray S.M., Carrillo J., Allen S.S., Eum S.Y. , Taylor K., Klein E., Manjunatha U., Gonzales J., Lee E.G., Park S.K., Raleigh J.A., Cho S.N., McMurray D.N. , Flynn J. L ., Barry C.E. 3rd. Tuberculous granulomas are hypoxic in guinea pigs, rabbits, and nonhuman primates. Infect. Immun., 2008, vol. 76, no. 6, pp. 2333–2340. doi: 10.1128/IAI.01515-07
- Vidal S., Malo D., Vogan K., Skamene E., Gros P. Natural resistance to infection with intracellular parasites: isolation of a candidate for Bcg. Cell, 1993, vol. 73, no. 3, pp. 469–485. doi: 10.1016/0092-8674(93)90135-d
- Wells W.F., Ratcliffe H.L., Grumb C. On the mechanics of droplet nuclei infection: quantitative experimental air-borne tuberculosis in rabbits. Am. J. Hyg., 1948, vol. 47, no. 1, pp. 11–28. doi: 10.1093/oxfordjournals.aje.a119179
- Williams A., Orme I.M. Animal models of tuberculosis: an overview. Microbiol. Spectr., 2016, vol. 4: 4. doi: 10.1128/microbiolspec.TBTB2-0004-2015
- Woo Y.D., Jeong D., Chung D.H. Development and functions of alveolar macrophages. Mol. Cells, 2021, vol. 44, no. 5, pp. 292–330. doi: 10.14348/molcells.2021.0058
- Yeremeev V., Linge I., Kondratieva T., Apt A. Neutrophils exacerbate tuberculosis infection in genetically susceptible mice. Tuberculosis (Edinb.), 2015, vol. 95, no. 4, pp. 447–451. doi: 10.1016/j.tube.2015.03.007
Дополнительные файлы
