Phylogenetic characteristics and analysis of the antigenic epitopes of Russian rotaviruses in comparison with vaccine strains

Cover Page

Cite item

Full Text

Abstract

Accumulation of mutations in the amino acid sequence of immunologically significant regions of the outer capsid proteins in locally circulating rotaviruses may reduce the effectiveness of vaccine-generated protection. The aim of the work was to comparatively analyze Russian rotaviruses and strains of the Indian pentavalent vaccine approved for use in the Russian Federation in 2020.

Materials and methods. There were used 38 rotavirus-positive samples derived from children with acute intestinal infection identified in 2022–2023. cDNA fragments of the VP7 gene 877 bp long were sequenced by two strands using “Nanofor 05” device. Phylogenetic analysis was performed using BEAST software package. The final sample included 161 VP7 gene sequences of RVA isolates from three Russian cities (Nizhny Novgorod, Moscow, Novosibirsk), other countries, and vaccine strains.

Results. Based on the results of phylogenetic analysis, Russian rotaviruses were found to belong to 13 lineages and/or sublineages (G1-I-A, G1-II-C, G2-IVa-1, G2-IV-3, G3-I, G3-3-а, G3-3-е, G4-I-с, G6-I, G8-IV, G9-III-d, G9-VI-е, G12-III). Vaccine strains (D, WI79-9, A41CB052A, DS-1, SC2–9, P, WI78-8, ST3, BrB-9, WI79-4, AU-32, 116E) were grouped separately in each case (G1-III, G1-II-A, G2-I, G2-II, G3-3-d, G4-I-а, G6-IV, G9-I, G9-II). Comparative analysis in the regions of antigenic epitopes targeted by neutralizing antibodies showed 3 to 6 amino acid differences between Russian and homotypic vaccine strains. The highest number was observed in isolates of sublineages G1-I-A, G2-IVa-1 and lineage G3-I. In the regions of T-cell epitopes, 1 to 4 substitutions were found. The greatest number of differences had rotaviruses of the G3-I lineage and the G4-I-c sublineage.

Conclusion. For the G3P[8] variant of the G3-I lineage, which is widespread in Russia, 6 substitutions in neutralizing epitopes and 4 substitutions in T-cell epitopes were found in comparison with homotypic vaccine strains. The study results are important for understanding a potential impact of vaccines on the antigenic structure of the rotavirus population in Russia.

About the authors

T. A. Sashina

Academician I.N. Blokhina Nizhny Novgorod Scientific Research Institute of Epidemiology and Microbiology

Email: tatyana.sashina@gmail.com

PhD (Biology), Senior Researcher, Laboratory of Molecular Epidemiology of Viral Infections

Russian Federation, Nizhniy Novgorod

O. V. Morozova

Academician I.N. Blokhina Nizhny Novgorod Scientific Research Institute of Epidemiology and Microbiology

Email: tatyana.sashina@gmail.com

PhD (Biology), Senior Researcher, Laboratory of Molecular Epidemiology of Viral Infections

Russian Federation, Nizhniy Novgorod

E. I. Velikzhanina

Academician I.N. Blokhina Nizhny Novgorod Scientific Research Institute of Epidemiology and Microbiology

Email: tatyana.sashina@gmail.com

Junior Researcher, Laboratory of Molecular Epidemiology of Viral Infections

Russian Federation, Nizhniy Novgorod

N. V. Epifanova

Academician I.N. Blokhina Nizhny Novgorod Scientific Research Institute of Epidemiology and Microbiology

Email: tatyana.sashina@gmail.com

PhD (Biology), Leading Researcher, Laboratory of Molecular Epidemiology of Viral Infections

Russian Federation, Nizhniy Novgorod

N. A. Novikova

Academician I.N. Blokhina Nizhny Novgorod Scientific Research Institute of Epidemiology and Microbiology

Author for correspondence.
Email: tatyana.sashina@gmail.com

DSc (Biology), Professor, Laboratory of Molecular Epidemiology of Viral Infections, Head of the Laboratory

Russian Federation, Nizhniy Novgorod

References

  1. Епифанова Н.В., Морозова О.В., Сашина Т.А., Новикова Н.А. Характеристика ротавируса генотипа G9, выявленного в Нижнем Новгороде в 2011–2012 годах // Медицинский алфавит. 2013. Т. 4, № 24. С. 20–26. [Epifanova N.V., Morozova O.V., Sashina T.A., Novikova N.A. Characteristics of rotavirus with G9-genotype identified in Nizhny Novgorod during years 2011–2012. Meditsinskiy alfavit = Medical Alphabet, 2013, vol. 4, no. 24, pp. 20–26. (In Russ.)]
  2. Морозова О.В., Сашина Т.А., Епифанова Н.В., Новикова Н.А. Различия в аминокислотном составе антигенных эпитопов белка VP7 российских ротавирусов с генотипом G9 и вакцинных штаммов RotaTeq, Rotavac и Rotarix // Инфекция и иммунитет. 2019. Т. 9, № 1. С. 57–66. [Morozova O.V., Sashina T.A., Epifanova N.V., Novikova N.A. Differences in the amino acid composition of the antigen epitop es of the VP7 protein of Russian rotaviruses with the G9 genotype and the vaccine strains RotaTeq, Rotavac, and Rotarix. Infektsiya i immunitet = Russian Journal of Infection and Immunity, 2019, vol. 9, no. 1, pp. 57–66. (In Russ.)] doi: 10.15789/2220-7619-2019-1-57-66]
  3. О состоянии санитарно-эпидемиологического благополучия населения в Российской Федерации в 2023 году: Государственный доклад. М.: Федеральная служба по надзору в сфере защиты прав потребителей и благополучия человека, 2024. 364 c. [On the state of sanitary and epidemiological welfare of the population in the Russian Federation in 2023: State report. Moscow: Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, 2024. 364 p. (In Russ.)] URL: https://www.rospotrebnadzor.ru/upload/iblock/fbc/sd3prfszlc9c2r4xbmsb7o3us38nrvpk/Gosudarstvennyy-doklad-_O-sostoyanii-sanitarno_epidemiologicheskogo-blagopoluchiya-naseleniya-v-Rossiyskoy-Federatsii-v-2023-godu_.pdf
  4. Петруша О.А., Корчевая Е.Р., Минтаев Р.Р., Исаков И.Ю., Никонова А.А., Мескина Е.Р., Ушакова А.Ю., Хадисова М.К., Зверев В.В., Файзулоев Е.Б. Молекулярно-генетические особенности ротавирусов группы А, выявленных в Москве в 2015–2020 гг. // Журнал микробиологии, эпидемиологии и иммунобиологии. 2022. Т. 99, № 1. С. 7–19. [Petrusha O.A., Korchevaya E.R., Mintaev R.R., Nikonova A.A., Isakov I.Y., Meskina E.R., Ushakova A.Y., Khadisova M.K., Zverev V.V., Faizuloev E.B. Molecular and genetic characteristics of group a rotaviruses detected in Moscow in 2015–2020. Zhurnal mikrobiologii, epidemiologii i immunobiologii = Journal of Microbiology, Epidemiology and Immunobiology, 2022, vol. 99, no. 1, pp. 7–19. (In Russ.)] doi: 10.36233/0372-9311-208
  5. Сашина Т.А., Морозова О.В., Епифанова Н.В., Кашников А.Ю., Леонов А.В., Новикова Н.А. Молекулярный мониторинг ротавирусов (Reoviridae: Sedoreovirinae: Rotavirus: Rotavirus A), циркулирующих в Нижнем Новгороде (2012–2020 гг.): обнаружение штаммов с новыми генетическими характеристиками // Вопросы вирусологии. 2021. Т. 66, № 2. С. 140–151. [Sashina T.A., Morozova O.V., Epifanova N.V., Kashnikov A.U., Leonov A.V., Novikova N.A. Molecular monitoring of the Rotavirus (Reoviridae: Sedoreovirinae: Rotavirus: Rotavirus A) strains circulating in Nizhny Novgorod (2012–2020): detection of the strains with the new genetic features. Voprosy virusologii = Problems of Virology, 2021, vol. 66, no. 2, pp. 140–151. (In Russ.)] doi: 10.36233/0507-4088-46
  6. Agbemabiese C.A., Nakagomi T., Doan Y.H., Nakagomi O. Whole genomic constellation of the first human G8 rotavirus strain detected in Japan. Infect. Genet. Evol., 2015, vol. 35, pp. 184–193. doi: 10.1016/j.meegid.2015.07.033
  7. Amit L.N., John J.L., Mori D., Chin A.Z., Mosiun A.K., Ahmed K. Increase in rotavirus prevalence with the emergence of genotype G9P[8] in replacement of genotype G12P[6] in Sabah, Malaysia. Arch. Virol., 2023, vol. 168, no. 6: 173. doi: 10.1007/s00705-023-05803-9
  8. Amit L.N., Mori D., John J.L., Chin A.Z., Mosiun A.K., Jeffree M.S., Ahmed K. Emergence of equine-like G3 strains as the dominant rotavirus among children under five with diarrhea in Sabah, Malaysia during 2018–2019. PLoS One, 2021, vol. 16, no. 7: e0254784. doi: 10.1371/journal.pone.0254784
  9. Aoki S.T., Settembre E.C., Trask S.D., Greenberg H.B., Harrison S.C., Dormitzer P.R. Structure of rotavirus outer-layer protein VP7 bound with a neutralizing Fab. Science, 2009, vol. 324, no. 5933, pp. 1444–1447. doi: 10.1126/science.1170481
  10. Bányai K., László B., Duque J., Steele A.D., Nelson E.A., Gentsch J.R., Parashar U.D. Systematic review of regional and temporal trends in global rotavirus strain diversity in the pre rotavirus vaccine era: insights for understanding the impact of rotavirus vaccination programs. Vaccine, 2012, vol. 30, suppl. 1, pp. A122–A130. doi: 10.1016/j.vaccine.2011.09.111
  11. Berois M., Libersou S., Russi J., Arbiza J., Cohen J. Genetic variation in the VP7 gene of human rotavirus isolated in Montevideo-Uruguay from 1996–1999. J. Med. Virol., 2003, vol. 71, no. 3, pp. 456–462. doi: 10.1002/jmv.10511
  12. Bok K., Matson D.O., Gomez J.A. Genetic variation of capsid protein VP7 in genotype g4 human rotavirus strains: simultaneous emergence and spread of different lineages in Argentina. J. Clin. Microbiol., 2002, vol. 40, no. 6, pp. 2016–2022. doi: 10.1128/JCM.40.6.2016-2022.2002
  13. Bonura F., Mangiaracina L., Filizzolo C., Bonura C., Martella V., Ciarlet M., Giammanco G.M., De Grazia S. Impact of vaccination on rotavirus genotype diversity: a nearly two-decade-long epidemiological study before and after rotavirus vaccine introduction in Sicily, Italy. Pathogens, 2022, vol. 11, no. 4: 424. doi: 10.3390/pathogens11040424
  14. Bucardo F., Karlsson B., Nordgren J., Paniagua M., González A., Amador J.J., Espinoza F., Svensson L. Mutated G4P[8] rotavirus associated with a nationwide outbreak of gastroenteritis in Nicaragua in 2005. J. Clin. Microbiol., 2007, vol. 45, no. 3, pp. 990–997. doi: 10.1128/JCM.01992-06
  15. Burnett E., Parashar U.D., Tate J.E. Global impact of rotavirus vaccination on diarrhea hospitalizations and deaths among children < 5 years old: 2006–2019. J. Infect. Dis., 2020, vol. 222, no. 10, pp. 1731–1739. doi: 10.1093/infdis/jiaa081
  16. Burnett E., Parashar U.D., Tate J.E. Real-world effectiveness of rotavirus vaccines, 2006-19: a literature review and meta-analysis. Lancet Glob. Health., 2020, vol. 8, no. 9, pp. e1195–e1202. doi: 10.1016/S2214-109X(20)30262-X
  17. Burnett E., Parashar U.D., Winn A., Tate J.E. Trends in rotavirus laboratory detections and internet search volume before and after rotavirus vaccine introduction and in the context of the coronavirus disease 2019 pandemic — United States, 2000–2021. J. Infect. Dis., 2022, vol. 226, no. 6, pp. 967–974. doi: 10.1093/infdis/jiac062
  18. Burnett E., Parashar U., Tate J. Rotavirus vaccines: effectiveness, safety, and future directions. Paediatr. Drugs, 2018, vol. 20, no. 3, pp. 223–233. doi: 10.1007/s40272-018-0283-3
  19. Burns J.W., Siadat-Pajouh M., Krishnaney A.A., Greenberg H.B. Protective effect of rotavirus VP6-specific IgA monoclonal antibodies that lack neutralizing activity. Science, 1996, vol. 272, no. 5258, pp. 104–107. doi: 10.1126/science.272.5258.104
  20. Carvalho-Costa F.A., Araújo I.T., Santos de Assis R.M., Fialho A.M., de Assis Martins C.M., Bóia M.N., Leite J.P. Rotavirus genotype distribution after vaccine introduction, Rio de Janeiro, Brazil. Emerg. Infect. Dis., 2009, vol. 15, no. 1, pp. 95–97. doi: 10.3201/eid1501.071136
  21. Caust J., Dyall-Smith M.L., Lazdins I., Holmes I.H. Glycosylation, an important modifier of rotavirus antigenicity. Arch. Virol., 1987, vol. 96, no. 3–4, pp. 123–134. doi: 10.1007/BF01320955
  22. Ciarlet M., Hoshino Y., Liprandi F. Single point mutations may affect the serotype reactivity of serotype G11 porcine rotavirus strains: a widening spectrum? J. Virol., 1997, vol. 71, no. 11, pp. 8213–8220. doi: 10.1128/JVI.71.11.8213-8220.1997
  23. Colomina J., Gil M.T., Codoñ P., Buesa J. Viral proteins VP2, VP6, and NSP2 are strongly precipitated by serum and fecal antibodies from children with rotavirus symptomatic infection. J. Med. Virol, 1998, vol. 56, pp. 58–65. doi: 10.1002/(SICI)1096-9071(199809)56:1<58::AID-JMV10>3.0.CO;2-S
  24. Cowley D., Donato C.M., Roczo-Farkas S., Kirkwood C.D. Emergence of a novel equine-like G3P[8] inter-genogroup reassortant rotavirus strain associated with gastroenteritis in Australian children. J. Gen. Virol., 2016, vol. 97, no. 2, pp. 403–410. doi: 10.1099/jgv.0.000352
  25. Cuffia V.I., Díaz Ariza Mdel C., Silvera A., Sabini L.I., Cordoba P.A. Comparison of antigenic dominants of VP7 in G9 and G1 rotavirus strains circulating in La Rioja, Argentina, with the vaccine strains. Viral Immunol., 2016, vol. 29, no. 6, pp. 367–371. doi: 10.1089/vim.2015.0126
  26. Das S., Varghese V., Chaudhury S., Barman P., Mahapatra S., Kojima K., Bhattacharya S.K., Krishnan T., Ratho R.K., Chhotray G.P., Phukan A.C., Kobayashi N., Naik T.N. Emergence of novel human group A rotavirus G12 strains in India. J. Clin. Microbiol., 2003, vol. 41, no. 6, pp. 2760–2762. doi: 10.1128/JCM.41.6.2760-2762.2003
  27. Do L.P., Nakagomi T., Doan Y.H., Kitahori Y., Nakagomi O. Molecular evolution of the VP7 gene of Japanese G2 rotaviruses before vaccine introduction. Arch. Virol., 2014, vol. 159, no. 2, pp. 315–319. doi: 10.1007/s00705-013-1804-6
  28. Doan Y.H., Nakagomi T., Cunliffe N.A., Pandey B.D., Sherchand J.B., Nakagomi O. The occurrence of amino acid substitutions D96N and S242N in VP7 of emergent G2P[4] rotaviruses in Nepal in 2004–2005: a global and evolutionary perspective. Arch. Virol., 2011, vol. 156, no. 11, pp. 1969–1978. doi: 10.1007/s00705-011-1083-z
  29. Elbashir I., Aldoos N.F., Mathew S., Al Thani A.A., Emara M.M., Yassine H.M. Molecular epidemiology, genetic diversity, and vaccine availability of viral acute gastroenteritis in the middle East and North Africa (MENA) region. J. Infect. Public. Health., 2022, vol. 15, no. 11, pp. 1193–1211. doi: 10.1016/j.jiph.2022.09.001
  30. Estes M.K., Greenberg H.B. Rotaviruses. Fields Virology. Eds. Knipe D.M., Howley P.M. Philadelphia: Wolters Kluwer Health/Lippincott Williams & Wilkins, 2013, pp. 1347–1401.
  31. Franco M.A., Greenberg H.B. Immunity to rotavirus infection in mice. J. Infect. Dis., 1999, vol. 179, suppl. 3, pp. S466–S469. doi: 10.1086/314805
  32. Glass R.I., Bhan M.K., Ray P., Bahl R., Parashar U.D., Greenberg H., Rao C.D., Bhandari N., Maldonado Y., Ward R.L., Bernstein D.I., Gentsch J.R. Development of candidate rotavirus vaccines derived from neonatal strains in India. J. Infect. Dis., 2005, vol. 192, suppl. 1, pp. S30–S35. doi: 10.1086/431498
  33. Gómara M.I., Cubitt D., Desselberger U., Gray J. Amino acid substitution within the VP7 protein of G2 rotavirus strains associated with failure to serotype. J. Clin. Microbiol., 2001, vol. 39, no. 10, pp. 3796–3798. doi: 10.1128/JCM.39.10.3796-3798.2001
  34. Gupta S., Tiku V.R., Gauhar M., Khatoon K., Ray P. Genetic diversity of G9 rotavirus strains circulating among diarrheic children in North India: а comparison with 116E rotavirus vaccine strain. Vaccine, 2021, vol. 39, no. 4, pp. 646–651. doi: 10.1016/j.vaccine.2020.12.037
  35. Hallowell B.D., Chavers T., Parashar U., Tate J.E. Global estimates of rotavirus hospitalizations among children below 5 years in 2019 and current and projected impacts of rotavirus vaccination. J. Pediatric Infect. Dis. Soc., 2022, vol. 11, no. 4, pp. 149–158. doi: 10.1093/jpids/piab114
  36. Honeyman M.C., Stone N.L., Falk B.A., Nepom G., Harrison L.C. Evidence for molecular mimicry between human T cell epitopes in rotavirus and pancreatic islet autoantigens. J. Immunol., 2010, vol. 184, no. 4, pp. 2204–2210. doi: 10.4049/jimmunol.0900709
  37. Hull J.J., Teel E.N., Kerin T.K., Freeman M.M., Esona M.D., Gentsch J.R., Cortese M.M., Parashar U.D., Glass R.I., Bowen M.D.; National Rotavirus Strain Surveillance System. United States rotavirus strain surveillance from 2005 to 2008: genotype prevalence before and after vaccine introduction. Pediatr. Infect. Dis. J., 2011, vol. 30, no. 1 (suppl.), pp. S42–S47. doi: 10.1097/INF.0b013e3181fefd78
  38. Jin Q., Ward R.L., Knowlton D.R., Gabbay Y.B., Linhares A.C., Rappaport R., Woods P.A., Glass R.I., Gentsch J.R. Divergence of VP7 genes of G1 rotaviruses isolated from infants vaccinated with reassortant rhesus rotaviruses. Arch. Virol., 1996, vol. 141, no. 11, pp. 2057–2076. doi: 10.1007/BF01718215
  39. Kirkwood C.D., Boniface K., Barnes G.L., Bishop R.F. Distribution of rotavirus genotypes after introduction of rotavirus vaccines, Rotarix® and RotaTeq®, into the National Immunization Program of Australia. Pediatr. Infect. Dis. J., 2011, vol. 30, no. 1 (suppl.), pp. S48–S53. doi: 10.1097/INF.0b013e3181fefd90
  40. Malakalinga J.J., Misinzo G., Msalya G.M., Shayo M.J., Kazwala R.R. Genetic diversity and genomic analysis of G3P[6] and equine-like G3P[8] in children under-five from Southern Highlands and Eastern Tanzania. Acta Trop., 2023, no. 242: 106902. doi: 10.1016/j.actatropica.2023.106902
  41. Manouana G.P., Niendorf S., Tomazatos A., Mbong Ngwese M., Nzamba Maloum M., Nguema Moure P.A., Bingoulou Matsougou G., Ategbo S., Rossatanga E.G., Bock C.T., Borrmann S., Mordmüller B., Eibach D., Kremsner P.G., Velavan T.P., Adegnika A.A. Molecular surveillance and genetic divergence of rotavirus A antigenic epitopes in Gabonese children with acute gastroenteritis. EBioMedicine, 2021, no. 73: 103648. doi: 10.1016/j.ebiom.2021.103648
  42. Mao T., Wang M., Wang J., Ma Y., Liu X., Wang M., Sun X., Li L., Li H., Zhang Q., Li D., Duan Z. Phylogenetic analysis of the viral proteins VP4/VP7 of circulating human rotavirus strains in China from 2016 to 2019 and comparison of their antigenic epitopes with those of vaccine strains. Front. Cell. Infect. Microbiol., 2022, no. 12: 927490. doi: 10.3389/fcimb.2022.927490
  43. Maranhão A.G., Vianez-Júnior J.L., Benati F.J., Bisch P.M., Santos N. Polymorphism of rotavirus genotype G1 in Brazil: in silico analysis of variant strains circulating in Rio de Janeiro from 1996 to 2004. Infect. Genet. Evol., 2012, vol. 12, no. 7, pp. 1397–1404. doi: 10.1016/j.meegid.2012.04.018
  44. Mathew S., Al Khatib H.A., Al Ibrahim M., Al Ansari K., Smatti M.K., Nasrallah G.K., Ibrahim E., Al Thani A.A., Zaraket H., Yassine H.M. Vaccine evaluation and genotype characterization in children infected with rotavirus in Qatar. Pediatr. Res., 2023, vol. 94, no. 2, pp. 477–485. doi: 10.1038/s41390-023-02468-7
  45. Matthijnssens J., Joelsson D.B., Warakomski D.J., Zhou T., Mathis P.K., van Maanen M.H., Ranheim T.S., Ciarlet M. Molecular and biological characterization of the 5 human-bovine rotavirus (WC3)-based reassortant strains of the pentavalent rotavirus vaccine, RotaTeq. Virology, 2010, vol. 403, no. 2, pp. 111–127. doi: 10.1016/j.virol.2010.04.004
  46. Matthijnssens J., Nakagomi O., Kirkwood C.D., Ciarlet M., Desselberger U., Van Ranst M. Group A rotavirus universal mass vaccination: how and to what extent will selective pressure influence prevalence of rotavirus genotypes? Expert Rev. Vaccines, 2012, vol. 11, no. 11, pp. 1347–1354. doi: 10.1586/erv.12.105
  47. Morozova O.V., Sashina T.A., Epifanova N.V., Velikzhanina E.I., Novikova N.A. Phylodynamic characteristics of reassortant DS-1-like G3P[8]-strains of rotavirus type A isolated in Nizhny Novgorod (Russia). Braz. J. Microbiol., 2023, vol. 54, no. 4, pp. 2867–2877. doi: 10.1007/s42770-023-01155-3
  48. Morozova O.V., Sashina T.A., Epifanova N.V., Zverev V.V., Kashnikov A.U., Novikova N.A. Phylogenetic comparison of the VP7, VP4, VP6, and NSP4 genes of rotaviruses isolated from children in Nizhny Novgorod, Russia, 2015–2016, with cogent genes of the Rotarix and RotaTeq vaccine strains. Virus Genes, 2018, vol. 54, no. 2, pp. 225–235. doi: 10.1007/s11262-017-1529-9
  49. Morozova O.V., Sashina T.A., Fomina S.G., Novikova N.A. Comparative characteristics of the VP7 and VP4 antigenic epitopes of the rotaviruses circulating in Russia (Nizhny Novgorod) and the Rotarix and RotaTeq vaccines. Arch. Virol., 2015, vol. 160, no. 7, pp. 1693–1703. doi: 10.1007/s00705-015-2439-6
  50. Motamedi-Rad M., Farahmand M., Arashkia A., Jalilvand S., Shoja Z. VP7 and VP4 genotypes of rotaviruses cocirculating in Iran, 2015 to 2017: comparison with cogent sequences of Rotarix and RotaTeq vaccine strains before their use for universal mass vaccination. J. Med. Virol., 2020, vol. 92, no. 8, pp. 1110–1123. doi: 10.1002/jmv.25642
  51. Mouna B.H., Hamida-Rebaï M.B., Heylen E., Zeller M., Moussa A., Kacem S., Van Ranst M., Matthijnssens J., Trabelsi A. Sequence and phylogenetic analyses of human rotavirus strains: comparison of VP7 and VP8(*) antigenic epitopes between Tunisian and vaccine strains before national rotavirus vaccine introduction. Infect. Genet. Evol., 2013, vol. 18, pp. 132–144. doi: 10.1016/j.meegid.2013.05.008
  52. Ndze V.N., Esona M.D., Achidi E.A., Gonsu K.H., Dóró R., Marton S., Farkas S., Ngeng M.B., Ngu A.F., Obama-Abena M.T., Bányai K. Full genome characterization of human Rotavirus A strains isolated in Cameroon, 2010–2011: diverse combinations of the G and P genes and lack of reassortment of the backbone genes. Infect. Genet. Evol., 2014, vol. 28, pp. 537–560. doi: 10.1016/j.meegid.2014.10.009
  53. Ogden K.M., Tan Y., Akopov A., Stewart L.S., McHenry R., Fonnesbeck C.J., Piya B., Carter M.H., Fedorova N.B., Halpin R.A., Shilts M.H., Edwards K.M., Payne D.C., Esona M.D., Mijatovic-Rustempasic S., Chappell J.D., Patton J.T., Halasa N.B., Das S.R. Multiple introductions and antigenic mismatch with vaccines may contribute to increased predominance of G12P[8] Rotaviruses in the United States. J. Virol., 2018, vol. 93, no. 1: e01476-18. doi: 10.1128/JVI.01476-18
  54. Parra M., Herrera D., Calvo-Calle J.M., Stern L.J., Parra-López C.A., Butcher E., Franco M., Angel J. Circulating human rotavirus specific CD4 T cells identified with a class II tetramer express the intestinal homing receptors α4β7 and CCR9. Virology, 2014, vol. 452–453, pp. 191–201. doi: 10.1016/j.virol.2014.01.014
  55. Patić A., Vuković V., Kovačević G., Petrović V., Ristić M., Djilas M., Knežević P., Pustahija T., Štrbac M., Djekić Malbaša J., Rajčević S., Hrnjaković Cvjetković I. Detection and molecular characterization of rotavirus infections in children and adults with gastroenteritis from Vojvodina, Serbia. Microorganisms, 2022, vol. 10, no. 10: 2050. doi: 10.3390/microorganisms10102050
  56. Paulke-Korinek M., Kollaritsch H., Aberle S.W., Zwazl I., Schmidle-Loss B., Vécsei A., Kundi M. Sustained low hospitalization rates after four years of rotavirus mass vaccination in Austria. Vaccine, 2013, vol. 31, no. 24, pp. 2686–2691. doi: 10.1016/j.vaccine.2013.04.001
  57. Phan T.G., Khamrin P., Quang T.D., Dey S.K., Takanashi S., Okitsu S., Maneekarn N., Ushijima H. Detection and genetic characterization of group A rotavirus strains circulating among children with acute gastroenteritis in Japan. J. Virol., 2007, vol. 81, no. 9, pp. 4645–4653. doi: 10.1128/JVI.02342-06
  58. Rasebotsa S., Mwangi P.N., Mogotsi M.T., Sabiu S., Magagula N.B., Rakau K., Uwimana J., Mutesa L., Muganga N., Murenzi D., Tuyisenge L., Jaimes J., Esona M.D., Bowen M.D., Mphahlele M.J., Seheri M.L., Mwenda J.M., Nyaga M.M. Whole genome and in-silico analyses of G1P[8] rotavirus strains from pre- and post-vaccination periods in Rwanda. Sci. Rep., 2020, vol. 10, no. 1: 13460. doi: 10.1038/s41598-020-69973-1
  59. Sashina T.A., Morozova O.V., Epifanova N.V., Novikova N.A. Predominance of new G9P[8] rotaviruses closely related to Turkish strains in Nizhny Novgorod (Russia). Arch. Virol., 2017, vol. 162, no. 8, pp. 2387–2392. doi: 10.1007/s00705-017-3364-7
  60. Sashina T.A., Velikzhanina E.I., Morozova O.V., Epifanova N.V., Novikova N.A. Detection and full-genotype determination of rare and reassortant rotavirus A strains in Nizhny Novgorod in the European part of Russia. Arch. Virol., 2023, vol. 168, no. 8: 215. doi: 10.1007/s00705-023-05838-y
  61. Selvarajan S., Reju S., Gopalakrishnan K., Padmanabhan R., Srikanth P. Evolutionary analysis of rotavirus G1P[8] strains from Chennai, South India. J. Med. Virol., 2022, vol. 94, no. 6, pp. 2870–2876. doi: 10.1002/jmv.27462
  62. Svensson L., Sheshberadaran H., Vene S., Norrby E., Grandien M., Wadell G. Serum antibody responses to individual viral polypeptides in human rotavirus infections. J. Gen. Virol., 1987, vol. 68 (Pt 3), pp. 643–651. doi: 10.1099/0022-1317-68-3-643
  63. Tahar A.S., Ong E.J., Rahardja A., Mamora D., Lim K.T., Ahmed K., Kulai D., Tan C.S. Emergence of equine-like G3 and porcine-like G9 rotavirus strains in Sarawak, Malaysia: 2019–2021. J. Med. Virol., 2023, vol. 95, no. 8: e28987. doi: 10.1002/jmv.28987
  64. Thanh H.D., Tran V.T., Lim I., Kim W. Emergence of human G2P[4] rotaviruses in the post-vaccination era in South Korea: footprints of multiple interspecies re-assortment events. Sci. Rep., 2018, vol. 8, no. 1: 6011. doi: 10.1038/s41598-018-24511-y
  65. Troeger C., Khalil I.A., Rao P.C., Cao S., Blacker B.F., Ahmed T., Armah G., Bines J.E., Brewer T.G., Colombara D.V., Kang G., Kirkpatrick B.D., Kirkwood C.D., Mwenda J.M., Parashar U.D., Petri W.A. Jr., Riddle M.S., Steele A.D., Thompson R.L., Walson J.L., Sanders J.W., Mokdad A.H., Murray C.J.L., Hay S.I., Reiner R.C. Jr. Rotavirus Vaccination and the global burden of rotavirus diarrhea among children younger than 5 years. JAMA Pediatr., 2018, vol. 172, no. 10, pp. 958–965. doi: 10.1001/jamapediatrics.2018.1960
  66. Wang Y.H., Pang B.B., Ghosh S., Zhou X., Shintani T., Urushibara N., Song Y.W., He M.Y., Liu M.Q., Tang W.F., Peng J.S., Hu Q., Zhou D.J., Kobayashi N. Molecular epidemiology and genetic evolution of the whole genome of G3P[8] human rotavirus in Wuhan, China, from 2000 through 2013. PLoS One, 2014, vol. 9, no. 3: e88850. doi: 10.1371/journal.pone.0088850
  67. Ward R. Mechanisms of protection against rotavirus infection and disease. Pediatr. Infect. Dis J., 2009, vol. 28, no. 3 (suppl.), pp. S57–S59. doi: 10.1097/INF.0b013e3181967c16
  68. Wei J., Li J., Zhang X., Tang Y., Wang J., Wu Y. A naturally processed epitope on rotavirus VP7 glycoprotein recognized by HLA-A2.1-restricted cytotoxic CD8+ T cells. Viral Immunol., 2009, vol. 22, no. 3, pp. 189–194. doi: 10.1089/vim.2008.0091
  69. Zade J.K., Kulkarni P.S., Desai S.A., Sabale R.N., Naik S.P., Dhere R.M. Bovine rotavirus pentavalent vaccine development in India. Vaccine, 2014, vol. 32, suppl. 1, pp. A124–A128. doi: 10.1016/j.vaccine.2014.03.003
  70. Zeller M., Donato C., Trovão N.S., Cowley D., Heylen E., Donker N.C., McAllen J.K., Akopov A., Kirkness E.F., Lemey P., Van Ranst M., Matthijnssens J., Kirkwood C.D. Genome-wide evolutionary analyses of G1P[8] strains isolated before and after rotavirus vaccine introduction. Genome. Biol. Evol., 2015, vol. 7, no. 9, pp. 2473–2483. doi: 10.1093/gbe/evv157
  71. Zeller M., Nuyts V., Heylen E., De Coster S., Conceição-Neto N., Van Ranst M., Matthijnssens J. Emergence of human G2P[4] rotaviruses containing animal derived gene segments in the post-vaccine era. Sci. Rep., 2016, no. 6: 36841. doi: 10.1038/srep36841
  72. Zeller M., Patton J.T., Heylen E., De Coster S., Ciarlet M., Van Ranst M., Matthijnssens J. Genetic analyses reveal differences in the VP7 and VP4 antigenic epitopes between human rotaviruses circulating in Belgium and rotaviruses in Rotarix and RotaTeq. J. Clin. Microbiol., 2012, vol. 50, no. 3, pp. 966–976. doi: 10.1128/JCM.05590-11

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Figure 1. Phylogenetic tree on the base of rotavirus VP7 gene

Download (492KB)
3. Figure 2. Structural model of trimeric VP7

Download (200KB)

Copyright (c) 2025 Sashina Т.А., Morozova О.V., Velikzhanina Е.I., Epifanova N.V., Novikova N.А.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».