Phylogenetic characteristics and analysis of the antigenic epitopes of Russian rotaviruses in comparison with vaccine strains
- Authors: Sashina T.A.1, Morozova O.V.1, Velikzhanina E.I.1, Epifanova N.V.1, Novikova N.A.1
-
Affiliations:
- Academician I.N. Blokhina Nizhny Novgorod Scientific Research Institute of Epidemiology and Microbiology
- Issue: Vol 15, No 2 (2025)
- Pages: 258-270
- Section: ORIGINAL ARTICLES
- URL: https://bakhtiniada.ru/2220-7619/article/view/311314
- DOI: https://doi.org/10.15789/2220-7619-PCA-17805
- ID: 311314
Cite item
Full Text
Abstract
Accumulation of mutations in the amino acid sequence of immunologically significant regions of the outer capsid proteins in locally circulating rotaviruses may reduce the effectiveness of vaccine-generated protection. The aim of the work was to comparatively analyze Russian rotaviruses and strains of the Indian pentavalent vaccine approved for use in the Russian Federation in 2020.
Materials and methods. There were used 38 rotavirus-positive samples derived from children with acute intestinal infection identified in 2022–2023. cDNA fragments of the VP7 gene 877 bp long were sequenced by two strands using “Nanofor 05” device. Phylogenetic analysis was performed using BEAST software package. The final sample included 161 VP7 gene sequences of RVA isolates from three Russian cities (Nizhny Novgorod, Moscow, Novosibirsk), other countries, and vaccine strains.
Results. Based on the results of phylogenetic analysis, Russian rotaviruses were found to belong to 13 lineages and/or sublineages (G1-I-A, G1-II-C, G2-IVa-1, G2-IV-3, G3-I, G3-3-а, G3-3-е, G4-I-с, G6-I, G8-IV, G9-III-d, G9-VI-е, G12-III). Vaccine strains (D, WI79-9, A41CB052A, DS-1, SC2–9, P, WI78-8, ST3, BrB-9, WI79-4, AU-32, 116E) were grouped separately in each case (G1-III, G1-II-A, G2-I, G2-II, G3-3-d, G4-I-а, G6-IV, G9-I, G9-II). Comparative analysis in the regions of antigenic epitopes targeted by neutralizing antibodies showed 3 to 6 amino acid differences between Russian and homotypic vaccine strains. The highest number was observed in isolates of sublineages G1-I-A, G2-IVa-1 and lineage G3-I. In the regions of T-cell epitopes, 1 to 4 substitutions were found. The greatest number of differences had rotaviruses of the G3-I lineage and the G4-I-c sublineage.
Conclusion. For the G3P[8] variant of the G3-I lineage, which is widespread in Russia, 6 substitutions in neutralizing epitopes and 4 substitutions in T-cell epitopes were found in comparison with homotypic vaccine strains. The study results are important for understanding a potential impact of vaccines on the antigenic structure of the rotavirus population in Russia.
Full Text
##article.viewOnOriginalSite##About the authors
T. A. Sashina
Academician I.N. Blokhina Nizhny Novgorod Scientific Research Institute of Epidemiology and Microbiology
Email: tatyana.sashina@gmail.com
PhD (Biology), Senior Researcher, Laboratory of Molecular Epidemiology of Viral Infections
Russian Federation, Nizhniy NovgorodO. V. Morozova
Academician I.N. Blokhina Nizhny Novgorod Scientific Research Institute of Epidemiology and Microbiology
Email: tatyana.sashina@gmail.com
PhD (Biology), Senior Researcher, Laboratory of Molecular Epidemiology of Viral Infections
Russian Federation, Nizhniy NovgorodE. I. Velikzhanina
Academician I.N. Blokhina Nizhny Novgorod Scientific Research Institute of Epidemiology and Microbiology
Email: tatyana.sashina@gmail.com
Junior Researcher, Laboratory of Molecular Epidemiology of Viral Infections
Russian Federation, Nizhniy NovgorodN. V. Epifanova
Academician I.N. Blokhina Nizhny Novgorod Scientific Research Institute of Epidemiology and Microbiology
Email: tatyana.sashina@gmail.com
PhD (Biology), Leading Researcher, Laboratory of Molecular Epidemiology of Viral Infections
Russian Federation, Nizhniy NovgorodN. A. Novikova
Academician I.N. Blokhina Nizhny Novgorod Scientific Research Institute of Epidemiology and Microbiology
Author for correspondence.
Email: tatyana.sashina@gmail.com
DSc (Biology), Professor, Laboratory of Molecular Epidemiology of Viral Infections, Head of the Laboratory
Russian Federation, Nizhniy NovgorodReferences
- Епифанова Н.В., Морозова О.В., Сашина Т.А., Новикова Н.А. Характеристика ротавируса генотипа G9, выявленного в Нижнем Новгороде в 2011–2012 годах // Медицинский алфавит. 2013. Т. 4, № 24. С. 20–26. [Epifanova N.V., Morozova O.V., Sashina T.A., Novikova N.A. Characteristics of rotavirus with G9-genotype identified in Nizhny Novgorod during years 2011–2012. Meditsinskiy alfavit = Medical Alphabet, 2013, vol. 4, no. 24, pp. 20–26. (In Russ.)]
- Морозова О.В., Сашина Т.А., Епифанова Н.В., Новикова Н.А. Различия в аминокислотном составе антигенных эпитопов белка VP7 российских ротавирусов с генотипом G9 и вакцинных штаммов RotaTeq, Rotavac и Rotarix // Инфекция и иммунитет. 2019. Т. 9, № 1. С. 57–66. [Morozova O.V., Sashina T.A., Epifanova N.V., Novikova N.A. Differences in the amino acid composition of the antigen epitop es of the VP7 protein of Russian rotaviruses with the G9 genotype and the vaccine strains RotaTeq, Rotavac, and Rotarix. Infektsiya i immunitet = Russian Journal of Infection and Immunity, 2019, vol. 9, no. 1, pp. 57–66. (In Russ.)] doi: 10.15789/2220-7619-2019-1-57-66]
- О состоянии санитарно-эпидемиологического благополучия населения в Российской Федерации в 2023 году: Государственный доклад. М.: Федеральная служба по надзору в сфере защиты прав потребителей и благополучия человека, 2024. 364 c. [On the state of sanitary and epidemiological welfare of the population in the Russian Federation in 2023: State report. Moscow: Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, 2024. 364 p. (In Russ.)] URL: https://www.rospotrebnadzor.ru/upload/iblock/fbc/sd3prfszlc9c2r4xbmsb7o3us38nrvpk/Gosudarstvennyy-doklad-_O-sostoyanii-sanitarno_epidemiologicheskogo-blagopoluchiya-naseleniya-v-Rossiyskoy-Federatsii-v-2023-godu_.pdf
- Петруша О.А., Корчевая Е.Р., Минтаев Р.Р., Исаков И.Ю., Никонова А.А., Мескина Е.Р., Ушакова А.Ю., Хадисова М.К., Зверев В.В., Файзулоев Е.Б. Молекулярно-генетические особенности ротавирусов группы А, выявленных в Москве в 2015–2020 гг. // Журнал микробиологии, эпидемиологии и иммунобиологии. 2022. Т. 99, № 1. С. 7–19. [Petrusha O.A., Korchevaya E.R., Mintaev R.R., Nikonova A.A., Isakov I.Y., Meskina E.R., Ushakova A.Y., Khadisova M.K., Zverev V.V., Faizuloev E.B. Molecular and genetic characteristics of group a rotaviruses detected in Moscow in 2015–2020. Zhurnal mikrobiologii, epidemiologii i immunobiologii = Journal of Microbiology, Epidemiology and Immunobiology, 2022, vol. 99, no. 1, pp. 7–19. (In Russ.)] doi: 10.36233/0372-9311-208
- Сашина Т.А., Морозова О.В., Епифанова Н.В., Кашников А.Ю., Леонов А.В., Новикова Н.А. Молекулярный мониторинг ротавирусов (Reoviridae: Sedoreovirinae: Rotavirus: Rotavirus A), циркулирующих в Нижнем Новгороде (2012–2020 гг.): обнаружение штаммов с новыми генетическими характеристиками // Вопросы вирусологии. 2021. Т. 66, № 2. С. 140–151. [Sashina T.A., Morozova O.V., Epifanova N.V., Kashnikov A.U., Leonov A.V., Novikova N.A. Molecular monitoring of the Rotavirus (Reoviridae: Sedoreovirinae: Rotavirus: Rotavirus A) strains circulating in Nizhny Novgorod (2012–2020): detection of the strains with the new genetic features. Voprosy virusologii = Problems of Virology, 2021, vol. 66, no. 2, pp. 140–151. (In Russ.)] doi: 10.36233/0507-4088-46
- Agbemabiese C.A., Nakagomi T., Doan Y.H., Nakagomi O. Whole genomic constellation of the first human G8 rotavirus strain detected in Japan. Infect. Genet. Evol., 2015, vol. 35, pp. 184–193. doi: 10.1016/j.meegid.2015.07.033
- Amit L.N., John J.L., Mori D., Chin A.Z., Mosiun A.K., Ahmed K. Increase in rotavirus prevalence with the emergence of genotype G9P[8] in replacement of genotype G12P[6] in Sabah, Malaysia. Arch. Virol., 2023, vol. 168, no. 6: 173. doi: 10.1007/s00705-023-05803-9
- Amit L.N., Mori D., John J.L., Chin A.Z., Mosiun A.K., Jeffree M.S., Ahmed K. Emergence of equine-like G3 strains as the dominant rotavirus among children under five with diarrhea in Sabah, Malaysia during 2018–2019. PLoS One, 2021, vol. 16, no. 7: e0254784. doi: 10.1371/journal.pone.0254784
- Aoki S.T., Settembre E.C., Trask S.D., Greenberg H.B., Harrison S.C., Dormitzer P.R. Structure of rotavirus outer-layer protein VP7 bound with a neutralizing Fab. Science, 2009, vol. 324, no. 5933, pp. 1444–1447. doi: 10.1126/science.1170481
- Bányai K., László B., Duque J., Steele A.D., Nelson E.A., Gentsch J.R., Parashar U.D. Systematic review of regional and temporal trends in global rotavirus strain diversity in the pre rotavirus vaccine era: insights for understanding the impact of rotavirus vaccination programs. Vaccine, 2012, vol. 30, suppl. 1, pp. A122–A130. doi: 10.1016/j.vaccine.2011.09.111
- Berois M., Libersou S., Russi J., Arbiza J., Cohen J. Genetic variation in the VP7 gene of human rotavirus isolated in Montevideo-Uruguay from 1996–1999. J. Med. Virol., 2003, vol. 71, no. 3, pp. 456–462. doi: 10.1002/jmv.10511
- Bok K., Matson D.O., Gomez J.A. Genetic variation of capsid protein VP7 in genotype g4 human rotavirus strains: simultaneous emergence and spread of different lineages in Argentina. J. Clin. Microbiol., 2002, vol. 40, no. 6, pp. 2016–2022. doi: 10.1128/JCM.40.6.2016-2022.2002
- Bonura F., Mangiaracina L., Filizzolo C., Bonura C., Martella V., Ciarlet M., Giammanco G.M., De Grazia S. Impact of vaccination on rotavirus genotype diversity: a nearly two-decade-long epidemiological study before and after rotavirus vaccine introduction in Sicily, Italy. Pathogens, 2022, vol. 11, no. 4: 424. doi: 10.3390/pathogens11040424
- Bucardo F., Karlsson B., Nordgren J., Paniagua M., González A., Amador J.J., Espinoza F., Svensson L. Mutated G4P[8] rotavirus associated with a nationwide outbreak of gastroenteritis in Nicaragua in 2005. J. Clin. Microbiol., 2007, vol. 45, no. 3, pp. 990–997. doi: 10.1128/JCM.01992-06
- Burnett E., Parashar U.D., Tate J.E. Global impact of rotavirus vaccination on diarrhea hospitalizations and deaths among children < 5 years old: 2006–2019. J. Infect. Dis., 2020, vol. 222, no. 10, pp. 1731–1739. doi: 10.1093/infdis/jiaa081
- Burnett E., Parashar U.D., Tate J.E. Real-world effectiveness of rotavirus vaccines, 2006-19: a literature review and meta-analysis. Lancet Glob. Health., 2020, vol. 8, no. 9, pp. e1195–e1202. doi: 10.1016/S2214-109X(20)30262-X
- Burnett E., Parashar U.D., Winn A., Tate J.E. Trends in rotavirus laboratory detections and internet search volume before and after rotavirus vaccine introduction and in the context of the coronavirus disease 2019 pandemic — United States, 2000–2021. J. Infect. Dis., 2022, vol. 226, no. 6, pp. 967–974. doi: 10.1093/infdis/jiac062
- Burnett E., Parashar U., Tate J. Rotavirus vaccines: effectiveness, safety, and future directions. Paediatr. Drugs, 2018, vol. 20, no. 3, pp. 223–233. doi: 10.1007/s40272-018-0283-3
- Burns J.W., Siadat-Pajouh M., Krishnaney A.A., Greenberg H.B. Protective effect of rotavirus VP6-specific IgA monoclonal antibodies that lack neutralizing activity. Science, 1996, vol. 272, no. 5258, pp. 104–107. doi: 10.1126/science.272.5258.104
- Carvalho-Costa F.A., Araújo I.T., Santos de Assis R.M., Fialho A.M., de Assis Martins C.M., Bóia M.N., Leite J.P. Rotavirus genotype distribution after vaccine introduction, Rio de Janeiro, Brazil. Emerg. Infect. Dis., 2009, vol. 15, no. 1, pp. 95–97. doi: 10.3201/eid1501.071136
- Caust J., Dyall-Smith M.L., Lazdins I., Holmes I.H. Glycosylation, an important modifier of rotavirus antigenicity. Arch. Virol., 1987, vol. 96, no. 3–4, pp. 123–134. doi: 10.1007/BF01320955
- Ciarlet M., Hoshino Y., Liprandi F. Single point mutations may affect the serotype reactivity of serotype G11 porcine rotavirus strains: a widening spectrum? J. Virol., 1997, vol. 71, no. 11, pp. 8213–8220. doi: 10.1128/JVI.71.11.8213-8220.1997
- Colomina J., Gil M.T., Codoñ P., Buesa J. Viral proteins VP2, VP6, and NSP2 are strongly precipitated by serum and fecal antibodies from children with rotavirus symptomatic infection. J. Med. Virol, 1998, vol. 56, pp. 58–65. doi: 10.1002/(SICI)1096-9071(199809)56:1<58::AID-JMV10>3.0.CO;2-S
- Cowley D., Donato C.M., Roczo-Farkas S., Kirkwood C.D. Emergence of a novel equine-like G3P[8] inter-genogroup reassortant rotavirus strain associated with gastroenteritis in Australian children. J. Gen. Virol., 2016, vol. 97, no. 2, pp. 403–410. doi: 10.1099/jgv.0.000352
- Cuffia V.I., Díaz Ariza Mdel C., Silvera A., Sabini L.I., Cordoba P.A. Comparison of antigenic dominants of VP7 in G9 and G1 rotavirus strains circulating in La Rioja, Argentina, with the vaccine strains. Viral Immunol., 2016, vol. 29, no. 6, pp. 367–371. doi: 10.1089/vim.2015.0126
- Das S., Varghese V., Chaudhury S., Barman P., Mahapatra S., Kojima K., Bhattacharya S.K., Krishnan T., Ratho R.K., Chhotray G.P., Phukan A.C., Kobayashi N., Naik T.N. Emergence of novel human group A rotavirus G12 strains in India. J. Clin. Microbiol., 2003, vol. 41, no. 6, pp. 2760–2762. doi: 10.1128/JCM.41.6.2760-2762.2003
- Do L.P., Nakagomi T., Doan Y.H., Kitahori Y., Nakagomi O. Molecular evolution of the VP7 gene of Japanese G2 rotaviruses before vaccine introduction. Arch. Virol., 2014, vol. 159, no. 2, pp. 315–319. doi: 10.1007/s00705-013-1804-6
- Doan Y.H., Nakagomi T., Cunliffe N.A., Pandey B.D., Sherchand J.B., Nakagomi O. The occurrence of amino acid substitutions D96N and S242N in VP7 of emergent G2P[4] rotaviruses in Nepal in 2004–2005: a global and evolutionary perspective. Arch. Virol., 2011, vol. 156, no. 11, pp. 1969–1978. doi: 10.1007/s00705-011-1083-z
- Elbashir I., Aldoos N.F., Mathew S., Al Thani A.A., Emara M.M., Yassine H.M. Molecular epidemiology, genetic diversity, and vaccine availability of viral acute gastroenteritis in the middle East and North Africa (MENA) region. J. Infect. Public. Health., 2022, vol. 15, no. 11, pp. 1193–1211. doi: 10.1016/j.jiph.2022.09.001
- Estes M.K., Greenberg H.B. Rotaviruses. Fields Virology. Eds. Knipe D.M., Howley P.M. Philadelphia: Wolters Kluwer Health/Lippincott Williams & Wilkins, 2013, pp. 1347–1401.
- Franco M.A., Greenberg H.B. Immunity to rotavirus infection in mice. J. Infect. Dis., 1999, vol. 179, suppl. 3, pp. S466–S469. doi: 10.1086/314805
- Glass R.I., Bhan M.K., Ray P., Bahl R., Parashar U.D., Greenberg H., Rao C.D., Bhandari N., Maldonado Y., Ward R.L., Bernstein D.I., Gentsch J.R. Development of candidate rotavirus vaccines derived from neonatal strains in India. J. Infect. Dis., 2005, vol. 192, suppl. 1, pp. S30–S35. doi: 10.1086/431498
- Gómara M.I., Cubitt D., Desselberger U., Gray J. Amino acid substitution within the VP7 protein of G2 rotavirus strains associated with failure to serotype. J. Clin. Microbiol., 2001, vol. 39, no. 10, pp. 3796–3798. doi: 10.1128/JCM.39.10.3796-3798.2001
- Gupta S., Tiku V.R., Gauhar M., Khatoon K., Ray P. Genetic diversity of G9 rotavirus strains circulating among diarrheic children in North India: а comparison with 116E rotavirus vaccine strain. Vaccine, 2021, vol. 39, no. 4, pp. 646–651. doi: 10.1016/j.vaccine.2020.12.037
- Hallowell B.D., Chavers T., Parashar U., Tate J.E. Global estimates of rotavirus hospitalizations among children below 5 years in 2019 and current and projected impacts of rotavirus vaccination. J. Pediatric Infect. Dis. Soc., 2022, vol. 11, no. 4, pp. 149–158. doi: 10.1093/jpids/piab114
- Honeyman M.C., Stone N.L., Falk B.A., Nepom G., Harrison L.C. Evidence for molecular mimicry between human T cell epitopes in rotavirus and pancreatic islet autoantigens. J. Immunol., 2010, vol. 184, no. 4, pp. 2204–2210. doi: 10.4049/jimmunol.0900709
- Hull J.J., Teel E.N., Kerin T.K., Freeman M.M., Esona M.D., Gentsch J.R., Cortese M.M., Parashar U.D., Glass R.I., Bowen M.D.; National Rotavirus Strain Surveillance System. United States rotavirus strain surveillance from 2005 to 2008: genotype prevalence before and after vaccine introduction. Pediatr. Infect. Dis. J., 2011, vol. 30, no. 1 (suppl.), pp. S42–S47. doi: 10.1097/INF.0b013e3181fefd78
- Jin Q., Ward R.L., Knowlton D.R., Gabbay Y.B., Linhares A.C., Rappaport R., Woods P.A., Glass R.I., Gentsch J.R. Divergence of VP7 genes of G1 rotaviruses isolated from infants vaccinated with reassortant rhesus rotaviruses. Arch. Virol., 1996, vol. 141, no. 11, pp. 2057–2076. doi: 10.1007/BF01718215
- Kirkwood C.D., Boniface K., Barnes G.L., Bishop R.F. Distribution of rotavirus genotypes after introduction of rotavirus vaccines, Rotarix® and RotaTeq®, into the National Immunization Program of Australia. Pediatr. Infect. Dis. J., 2011, vol. 30, no. 1 (suppl.), pp. S48–S53. doi: 10.1097/INF.0b013e3181fefd90
- Malakalinga J.J., Misinzo G., Msalya G.M., Shayo M.J., Kazwala R.R. Genetic diversity and genomic analysis of G3P[6] and equine-like G3P[8] in children under-five from Southern Highlands and Eastern Tanzania. Acta Trop., 2023, no. 242: 106902. doi: 10.1016/j.actatropica.2023.106902
- Manouana G.P., Niendorf S., Tomazatos A., Mbong Ngwese M., Nzamba Maloum M., Nguema Moure P.A., Bingoulou Matsougou G., Ategbo S., Rossatanga E.G., Bock C.T., Borrmann S., Mordmüller B., Eibach D., Kremsner P.G., Velavan T.P., Adegnika A.A. Molecular surveillance and genetic divergence of rotavirus A antigenic epitopes in Gabonese children with acute gastroenteritis. EBioMedicine, 2021, no. 73: 103648. doi: 10.1016/j.ebiom.2021.103648
- Mao T., Wang M., Wang J., Ma Y., Liu X., Wang M., Sun X., Li L., Li H., Zhang Q., Li D., Duan Z. Phylogenetic analysis of the viral proteins VP4/VP7 of circulating human rotavirus strains in China from 2016 to 2019 and comparison of their antigenic epitopes with those of vaccine strains. Front. Cell. Infect. Microbiol., 2022, no. 12: 927490. doi: 10.3389/fcimb.2022.927490
- Maranhão A.G., Vianez-Júnior J.L., Benati F.J., Bisch P.M., Santos N. Polymorphism of rotavirus genotype G1 in Brazil: in silico analysis of variant strains circulating in Rio de Janeiro from 1996 to 2004. Infect. Genet. Evol., 2012, vol. 12, no. 7, pp. 1397–1404. doi: 10.1016/j.meegid.2012.04.018
- Mathew S., Al Khatib H.A., Al Ibrahim M., Al Ansari K., Smatti M.K., Nasrallah G.K., Ibrahim E., Al Thani A.A., Zaraket H., Yassine H.M. Vaccine evaluation and genotype characterization in children infected with rotavirus in Qatar. Pediatr. Res., 2023, vol. 94, no. 2, pp. 477–485. doi: 10.1038/s41390-023-02468-7
- Matthijnssens J., Joelsson D.B., Warakomski D.J., Zhou T., Mathis P.K., van Maanen M.H., Ranheim T.S., Ciarlet M. Molecular and biological characterization of the 5 human-bovine rotavirus (WC3)-based reassortant strains of the pentavalent rotavirus vaccine, RotaTeq. Virology, 2010, vol. 403, no. 2, pp. 111–127. doi: 10.1016/j.virol.2010.04.004
- Matthijnssens J., Nakagomi O., Kirkwood C.D., Ciarlet M., Desselberger U., Van Ranst M. Group A rotavirus universal mass vaccination: how and to what extent will selective pressure influence prevalence of rotavirus genotypes? Expert Rev. Vaccines, 2012, vol. 11, no. 11, pp. 1347–1354. doi: 10.1586/erv.12.105
- Morozova O.V., Sashina T.A., Epifanova N.V., Velikzhanina E.I., Novikova N.A. Phylodynamic characteristics of reassortant DS-1-like G3P[8]-strains of rotavirus type A isolated in Nizhny Novgorod (Russia). Braz. J. Microbiol., 2023, vol. 54, no. 4, pp. 2867–2877. doi: 10.1007/s42770-023-01155-3
- Morozova O.V., Sashina T.A., Epifanova N.V., Zverev V.V., Kashnikov A.U., Novikova N.A. Phylogenetic comparison of the VP7, VP4, VP6, and NSP4 genes of rotaviruses isolated from children in Nizhny Novgorod, Russia, 2015–2016, with cogent genes of the Rotarix and RotaTeq vaccine strains. Virus Genes, 2018, vol. 54, no. 2, pp. 225–235. doi: 10.1007/s11262-017-1529-9
- Morozova O.V., Sashina T.A., Fomina S.G., Novikova N.A. Comparative characteristics of the VP7 and VP4 antigenic epitopes of the rotaviruses circulating in Russia (Nizhny Novgorod) and the Rotarix and RotaTeq vaccines. Arch. Virol., 2015, vol. 160, no. 7, pp. 1693–1703. doi: 10.1007/s00705-015-2439-6
- Motamedi-Rad M., Farahmand M., Arashkia A., Jalilvand S., Shoja Z. VP7 and VP4 genotypes of rotaviruses cocirculating in Iran, 2015 to 2017: comparison with cogent sequences of Rotarix and RotaTeq vaccine strains before their use for universal mass vaccination. J. Med. Virol., 2020, vol. 92, no. 8, pp. 1110–1123. doi: 10.1002/jmv.25642
- Mouna B.H., Hamida-Rebaï M.B., Heylen E., Zeller M., Moussa A., Kacem S., Van Ranst M., Matthijnssens J., Trabelsi A. Sequence and phylogenetic analyses of human rotavirus strains: comparison of VP7 and VP8(*) antigenic epitopes between Tunisian and vaccine strains before national rotavirus vaccine introduction. Infect. Genet. Evol., 2013, vol. 18, pp. 132–144. doi: 10.1016/j.meegid.2013.05.008
- Ndze V.N., Esona M.D., Achidi E.A., Gonsu K.H., Dóró R., Marton S., Farkas S., Ngeng M.B., Ngu A.F., Obama-Abena M.T., Bányai K. Full genome characterization of human Rotavirus A strains isolated in Cameroon, 2010–2011: diverse combinations of the G and P genes and lack of reassortment of the backbone genes. Infect. Genet. Evol., 2014, vol. 28, pp. 537–560. doi: 10.1016/j.meegid.2014.10.009
- Ogden K.M., Tan Y., Akopov A., Stewart L.S., McHenry R., Fonnesbeck C.J., Piya B., Carter M.H., Fedorova N.B., Halpin R.A., Shilts M.H., Edwards K.M., Payne D.C., Esona M.D., Mijatovic-Rustempasic S., Chappell J.D., Patton J.T., Halasa N.B., Das S.R. Multiple introductions and antigenic mismatch with vaccines may contribute to increased predominance of G12P[8] Rotaviruses in the United States. J. Virol., 2018, vol. 93, no. 1: e01476-18. doi: 10.1128/JVI.01476-18
- Parra M., Herrera D., Calvo-Calle J.M., Stern L.J., Parra-López C.A., Butcher E., Franco M., Angel J. Circulating human rotavirus specific CD4 T cells identified with a class II tetramer express the intestinal homing receptors α4β7 and CCR9. Virology, 2014, vol. 452–453, pp. 191–201. doi: 10.1016/j.virol.2014.01.014
- Patić A., Vuković V., Kovačević G., Petrović V., Ristić M., Djilas M., Knežević P., Pustahija T., Štrbac M., Djekić Malbaša J., Rajčević S., Hrnjaković Cvjetković I. Detection and molecular characterization of rotavirus infections in children and adults with gastroenteritis from Vojvodina, Serbia. Microorganisms, 2022, vol. 10, no. 10: 2050. doi: 10.3390/microorganisms10102050
- Paulke-Korinek M., Kollaritsch H., Aberle S.W., Zwazl I., Schmidle-Loss B., Vécsei A., Kundi M. Sustained low hospitalization rates after four years of rotavirus mass vaccination in Austria. Vaccine, 2013, vol. 31, no. 24, pp. 2686–2691. doi: 10.1016/j.vaccine.2013.04.001
- Phan T.G., Khamrin P., Quang T.D., Dey S.K., Takanashi S., Okitsu S., Maneekarn N., Ushijima H. Detection and genetic characterization of group A rotavirus strains circulating among children with acute gastroenteritis in Japan. J. Virol., 2007, vol. 81, no. 9, pp. 4645–4653. doi: 10.1128/JVI.02342-06
- Rasebotsa S., Mwangi P.N., Mogotsi M.T., Sabiu S., Magagula N.B., Rakau K., Uwimana J., Mutesa L., Muganga N., Murenzi D., Tuyisenge L., Jaimes J., Esona M.D., Bowen M.D., Mphahlele M.J., Seheri M.L., Mwenda J.M., Nyaga M.M. Whole genome and in-silico analyses of G1P[8] rotavirus strains from pre- and post-vaccination periods in Rwanda. Sci. Rep., 2020, vol. 10, no. 1: 13460. doi: 10.1038/s41598-020-69973-1
- Sashina T.A., Morozova O.V., Epifanova N.V., Novikova N.A. Predominance of new G9P[8] rotaviruses closely related to Turkish strains in Nizhny Novgorod (Russia). Arch. Virol., 2017, vol. 162, no. 8, pp. 2387–2392. doi: 10.1007/s00705-017-3364-7
- Sashina T.A., Velikzhanina E.I., Morozova O.V., Epifanova N.V., Novikova N.A. Detection and full-genotype determination of rare and reassortant rotavirus A strains in Nizhny Novgorod in the European part of Russia. Arch. Virol., 2023, vol. 168, no. 8: 215. doi: 10.1007/s00705-023-05838-y
- Selvarajan S., Reju S., Gopalakrishnan K., Padmanabhan R., Srikanth P. Evolutionary analysis of rotavirus G1P[8] strains from Chennai, South India. J. Med. Virol., 2022, vol. 94, no. 6, pp. 2870–2876. doi: 10.1002/jmv.27462
- Svensson L., Sheshberadaran H., Vene S., Norrby E., Grandien M., Wadell G. Serum antibody responses to individual viral polypeptides in human rotavirus infections. J. Gen. Virol., 1987, vol. 68 (Pt 3), pp. 643–651. doi: 10.1099/0022-1317-68-3-643
- Tahar A.S., Ong E.J., Rahardja A., Mamora D., Lim K.T., Ahmed K., Kulai D., Tan C.S. Emergence of equine-like G3 and porcine-like G9 rotavirus strains in Sarawak, Malaysia: 2019–2021. J. Med. Virol., 2023, vol. 95, no. 8: e28987. doi: 10.1002/jmv.28987
- Thanh H.D., Tran V.T., Lim I., Kim W. Emergence of human G2P[4] rotaviruses in the post-vaccination era in South Korea: footprints of multiple interspecies re-assortment events. Sci. Rep., 2018, vol. 8, no. 1: 6011. doi: 10.1038/s41598-018-24511-y
- Troeger C., Khalil I.A., Rao P.C., Cao S., Blacker B.F., Ahmed T., Armah G., Bines J.E., Brewer T.G., Colombara D.V., Kang G., Kirkpatrick B.D., Kirkwood C.D., Mwenda J.M., Parashar U.D., Petri W.A. Jr., Riddle M.S., Steele A.D., Thompson R.L., Walson J.L., Sanders J.W., Mokdad A.H., Murray C.J.L., Hay S.I., Reiner R.C. Jr. Rotavirus Vaccination and the global burden of rotavirus diarrhea among children younger than 5 years. JAMA Pediatr., 2018, vol. 172, no. 10, pp. 958–965. doi: 10.1001/jamapediatrics.2018.1960
- Wang Y.H., Pang B.B., Ghosh S., Zhou X., Shintani T., Urushibara N., Song Y.W., He M.Y., Liu M.Q., Tang W.F., Peng J.S., Hu Q., Zhou D.J., Kobayashi N. Molecular epidemiology and genetic evolution of the whole genome of G3P[8] human rotavirus in Wuhan, China, from 2000 through 2013. PLoS One, 2014, vol. 9, no. 3: e88850. doi: 10.1371/journal.pone.0088850
- Ward R. Mechanisms of protection against rotavirus infection and disease. Pediatr. Infect. Dis J., 2009, vol. 28, no. 3 (suppl.), pp. S57–S59. doi: 10.1097/INF.0b013e3181967c16
- Wei J., Li J., Zhang X., Tang Y., Wang J., Wu Y. A naturally processed epitope on rotavirus VP7 glycoprotein recognized by HLA-A2.1-restricted cytotoxic CD8+ T cells. Viral Immunol., 2009, vol. 22, no. 3, pp. 189–194. doi: 10.1089/vim.2008.0091
- Zade J.K., Kulkarni P.S., Desai S.A., Sabale R.N., Naik S.P., Dhere R.M. Bovine rotavirus pentavalent vaccine development in India. Vaccine, 2014, vol. 32, suppl. 1, pp. A124–A128. doi: 10.1016/j.vaccine.2014.03.003
- Zeller M., Donato C., Trovão N.S., Cowley D., Heylen E., Donker N.C., McAllen J.K., Akopov A., Kirkness E.F., Lemey P., Van Ranst M., Matthijnssens J., Kirkwood C.D. Genome-wide evolutionary analyses of G1P[8] strains isolated before and after rotavirus vaccine introduction. Genome. Biol. Evol., 2015, vol. 7, no. 9, pp. 2473–2483. doi: 10.1093/gbe/evv157
- Zeller M., Nuyts V., Heylen E., De Coster S., Conceição-Neto N., Van Ranst M., Matthijnssens J. Emergence of human G2P[4] rotaviruses containing animal derived gene segments in the post-vaccine era. Sci. Rep., 2016, no. 6: 36841. doi: 10.1038/srep36841
- Zeller M., Patton J.T., Heylen E., De Coster S., Ciarlet M., Van Ranst M., Matthijnssens J. Genetic analyses reveal differences in the VP7 and VP4 antigenic epitopes between human rotaviruses circulating in Belgium and rotaviruses in Rotarix and RotaTeq. J. Clin. Microbiol., 2012, vol. 50, no. 3, pp. 966–976. doi: 10.1128/JCM.05590-11
