Assessment of the relationship between Epstein–Barr virus major types and genovariants as well as clinical and laboratory parameters in HIV-infected adults
- 作者: Popkova M.I.1, Filatova E.N.1, Minaeva S.V.2, Sakharnov N.A.1, Utkin O.V.1
-
隶属关系:
- Academician I.N. Blokhina Nizhny Novgorod Scientific Research Institute of Epidemiology and Microbiology
- Privolzhskiy Research Medical University
- 期: 卷 14, 编号 5 (2024)
- 页面: 936-950
- 栏目: ORIGINAL ARTICLES
- URL: https://bakhtiniada.ru/2220-7619/article/view/284803
- DOI: https://doi.org/10.15789/2220-7619-AOT-17623
- ID: 284803
如何引用文章
全文:
详细
Introduction. People living with human immunodeficiency virus (HIV) are more likely to experience Epstein–Barr virus (EBV) reactivation and develop EBV-associated diseases. In Russia, the clinical significance of EBV genetic diversity in HIV-infected patients has not been assessed. The aim was to analyze a relationship between the major EBV types and LMP-1 genovariants with clinical and laboratory parameters in HIV-infected persons. Materials and methods. Peripheral blood leukocytes were collected from 138 HIV(+) individuals aged 20–69 years. Association between EBV types, LMP-1 variants and subvariants with clinical and laboratory parameters (CD4+ T-lymphocyte count, HIV and EBV viral load, use and adherence to antiretroviral therapy (ART)), was performed using the principal component analysis method and the Mann–Whitney U test. Results. It has been shown that detectable HIV viral load increases in patients with low CD4+ T-lymphocyte counts, high EBV viral load, and low or no ART adherence. In general, infection with EBV-2 or the LMP-1 B95-8 alone resulted in lower EBV and HIV viral loads compared with other variants. Significant EBV-1 LMP-1 subvariants were identified, the biological potential of which was enabled in immunodeficiency state (CD4+ T-lymphocyte count ≤ 200 cells/μl). In “naive” patients, EBV-1/LMP-1 (S309N)+HIV co-infection occurred with a higher, and EBV-1/LMP-1(E328Q)+HIV with the lowest HIV viral load. The highest EBV DNA concentrations were observed with EBV-1/LMP-1(Q334R)+HIV. In “experienced” patients, the level of EBV DNA was significantly lower when infected with EBV-1/LMP-1(E328Q)+HIV and, conversely, higher in case of detected EBV-1/LMP-1(H358P)+HIV. Conclusion. The features of clinical and laboratory parameters EBV+HIV co-infection caused by different EBV-1 LMP-1 subvariants (at the level of amino acid substitutions S309N, E328Q, Q334R, H358P) have been identified. It is necessary to study the functional role of such mutations in vitro and in vivo. In the context of assessing a clinical significance of EBV molecular genetic diversity, it is advisable to conduct larger-scale studies in different territories of Russia.
关键词
作者简介
Mariia Popkova
Academician I.N. Blokhina Nizhny Novgorod Scientific Research Institute of Epidemiology and Microbiology
编辑信件的主要联系方式.
Email: popmarig@mail.ru
PhD (Medicine), Leading Researcher, Laboratory of Molecular Biology and Biotechnology
俄罗斯联邦, Nizhniy NovgorodE. Filatova
Academician I.N. Blokhina Nizhny Novgorod Scientific Research Institute of Epidemiology and Microbiology
Email: popmarig@mail.ru
PhD (Biology), Leading Researcher, Laboratory of Molecular Biology and Biotechnology
俄罗斯联邦, Nizhniy NovgorodS. Minaeva
Privolzhskiy Research Medical University
Email: popmarig@mail.ru
PhD (Мedicine), Associate Professor of the Epidemiology, Microbiology and Evidence-Based Medicine Department
俄罗斯联邦, Nizhniy NovgorodN. Sakharnov
Academician I.N. Blokhina Nizhny Novgorod Scientific Research Institute of Epidemiology and Microbiology
Email: popmarig@mail.ru
PhD (Biology), Senior Researcher, Laboratory of Molecular Biology and Biotechnology
俄罗斯联邦, Nizhniy NovgorodO. Utkin
Academician I.N. Blokhina Nizhny Novgorod Scientific Research Institute of Epidemiology and Microbiology
Email: popmarig@mail.ru
PhD (Biology), Head of the Laboratory of Molecular Biology and Biotechnology
俄罗斯联邦, Nizhniy Novgorod参考
- Викулов Г.Х., Орадовская И.В., Колобухина Л.В., Русанова С.А., Антипят Н.А., Тюрин И.Н. Герпесвирусные инфекции и ВИЧ (диагностика и клинические особенности) // Врач. 2023. Т. 34, № 12. С. 91–97. [Vikulov G., Oradovskaya I., Kolobukhina L., Rusanova S., Antipyat N., Tyurin I. Herpesvirus infections and HIV (diagnosis and clinical features). Vrach = The Doctor, 2023, vol. 34, no. 12, pp. 91–97. (In Russ.)] doi: 10.29296/25877305-2023-12-19
- Давидович Г.М., Карпов И.А. Клиническое течение вирусной инфекции Эпштейн–Барр у пациентов c ВИЧ // Рецепт. 2007. № 4 (54). С. 115–117. [Davidovich G.M., Karpov I.A. Clinical course of Epstein–Barr viral infection in patients with HIV. Retsept = Recipe, 2007, no. 4, pp. 115–117. (In Russ.)]
- Мартынова Г.П., Кузнецова Н.Ф., Мазанкова Л.Н., Шарипова Е.В. Клинические рекомендации (протокол лечения) оказания медицинской помощи детям, больным инфекционным мононуклеозом. СПб., 2013. 70 c. [Martynova G.P., Kuznetsova N.F., Mazankova L.N., Sharipova E.V. Clinical recommendations (treatment protocol) for providing medical care to children with infectious mononucleosis. St. Petersburg, 2013. 70 p. (In Russ.)] URL: http://niidi.ru/dotAsset/a6816d03-b0d9- 4d37-9b09-540f48e3ed43.pdf6 (13.12.2022)
- Павлиш О.А., Дидук С.В., Смирнова К.В., Щербак Л.Н., Гончарова Е.В., Шалгинских Н.А., Архипов В.В., Кичигина М.И. , Степина В.Н., Белоусова Н.В., Османов Е.А., Яковлева Л.С., Гурцевич В.Э. Мутации гена LMP1 вируса Эпштейна–Барр у российских больных с лимфоидной патологией и здоровых лиц // Вопросы вирусологии. 2008. Т. 53, № 1. С. 10–16. [Pavlish O.A., Diduk S.V., Smirnova K.V., Shcherbak L.N., Goncharova E.V., Shalginskikh N.A., Arkhipov V.V., Kichigina MIu, Stepina V.N., Belousova N.V., Osmanov E.A., Iakovleva L.S., Gurtsevich V.E. Mutations of the Epstein–Barr virus LMP1 gene mutations In Russian patients with lymphoid pathology and healthy individuals. Voprosy virusologii = Problems of Virology, 2008, vol. 53, no. 1, pp. 10–16. (In Russ.)]
- Попкова М.И., Уткин О.В., Соболева Е.А., Сахарнов Н.А., Брызгалова Д.А., Сенатская А.О., Кулова Е.А. Методические основы дифференциальной детекции ВЭБ1/ВЭБ2 и ВГЧ6A/ВГЧ6B // Инфекция и иммунитет. 2021. Т. 11, № 6. C. 1057–1066. [Popkova M.I., Utkin O.V., Soboleva E.A., Sakharnov N.A., Bryzgalova D.A., Senatskaia A.O., Kulova E.A. Methodological basics for differential detection of EBV1/EBV2 and HHV6A/HHV6B. Infektsiya i immunitet = Russian Journal of Infection and Immunity, 2021, vol. 11, no. 6, pp. 1057–1066. (In Russ.)] doi: 10.15789/2220-7619-MBF-1661
- Попкова М.И., Уткин О.В., Брызгалова Д.А., Сахарнов Н.А., Соболева Е.А., Кулова Е.А. Молекулярно-генетическая характеристика нижегородских изолятов вируса Эпштейна–Барр у детей при инфекционном мононуклеозе и здоровом вирусоносительстве // Инфекция и иммунитет. 2023. Т. 13, № 2. C. 275–288. [Popkova M.I., Utkin O.V., Bryzgalova D.A., Sakharnov N.A., Soboleva E.A., Kulova E.A. Molecular and genetic characteristics of Nizhny Novgorod Region Epstein–Barr virus isolates in children with infectious mononucleosis and healthy virus carriers. Infektsiya i immunitet = Russian Journal of Infection and Immunity, 2023, vol. 13, no. 2, pp. 275–288. (In Russ.)] doi: 10.15789/2220-7619-MAG-2056
- Попкова М.И., Уткин О.В., Филатова Е.Н., Брызгалова Д.А., Сахарнов Н.А., Соболева Е.А., Назарова Л.В. Молекулярно-генетическая характеристика вируса Эпштейна–Барр: взаимосвязь с клиническими особенностями инфекционного мононуклеоза у детей // Инфекция и иммунитет. 2023. Т. 13, № 3. C. 481–496. [Popkova M.I., Utkin O.V., Filatova E.N., Bryzgalova D.A., Sakharnov N.A., Soboleva E.A., Nazarova L.V. Molecular genetic characterization of the Epstein–Barr Virus: a relationship with the clinical features of pediatric infectious mononucleosis. Infektsiya i immunitet = Russian Journal of Infection and Immunity, 2023, vol. 13, no. 3, pp. 481–496. (In Russ.)] doi: 10.15789/2220-7619-MGC-2121
- Попкова М.И., Уткин О.В. Генетическое разнообразие вируса Эпштейна–Барр: современный взгляд на проблему // Журнал микробиологии, эпидемиологии и иммунобиологии. 2022. Т. 99, № 1. C. 93–108. [Popkova M.I., Utkin O.V. Genetic diversity of the Epstein–Barr virus: a modern view of the problem. Zhurnal mikrobiologii, epidemiologii i immunobiologii = Journal of Microbiology, Epidemiology and Immunobiology, 2022, vol. 99, no. 1, pp. 93–108. (In Russ.)] doi: 10.36233/0372-9311-228
- Рассохин В.В., Некрасова А.В., Байков В.В., Ильин Н.В., Виноградова Ю.Н. Эпидемиология, диагностика и лечение ВИЧ-ассоциированных неходжкинских лимфом // ВИЧ-инфекция и иммуносупрессии. 2018. Т. 10, № 3. С. 17–29. [Rassokhin V.V., Nekrasova A.V., Baikov V.V., Ilyin N.V., Vinogradova Yu.N. Epidemoilogy, diagnosis, and treatment of HIV-associated non-hodgkin lymphpomas. VICh-infektsiya i immunosupressii = HIV Infection and Immunosuppressive Disorders, 2018, vol. 10, no. 3, pp. 17–29. (In Russ.)] doi: 10.22328/2077-9828-2018-10-3-17-29
- Смирнова К.В., Дидук С.В., Гурцевич В.Э. Полиморфизм онкогена LMP1 вируса Эпштейна–Барр у представителей коренного малочисленного народа Дальнего Востока России // Эпидемиология и инфекционные болезни. 2017. Т. 22, № 5. С. 239–247. [Smirnova K.V., Diduk S.V., Gurtsevitch V.E. Polymorphism of Epstein–Barr virus LMP1 oncogene in nanaians, representatives of indigenous minority of the russian Far East. Epidemiologiya i infektsionnye bolezni = Epidemiology and Infectious Diseases, 2017, vol. 22, no. 5, pp. 239–247. (In Russ.)] doi: 10.18821/1560-9529-2017-22-5-239-247
- Смирнова К.В., Сенюта Н.Б., Лубенская А.К., Душенькина Т.Е., Гурцевич В.Э. Древние варианты вируса Эпштейна–Барр (Herpesviridae, Lymphocryptovirus, HHV-4): гипотезы и факты // Вопросы вирусологии. 2020. Т. 65, № 2. C. 77–86. [Smirnova K.V., Senyuta N.B., Lubenskaya A.K., Dushenkina T.E., Gurtsevich V.E. Ancient variants of the Epstein–Barr virus (Herpesviridae, Lymphocryptovirus, HHV-4): hypotheses and facts. Voprosy virusologii = Problems of Virology, 2020, vol. 65, no. 2, pp. 77–86. (In Russ.)] doi: 10.36233/0507-4088-2020-65-2-77-86
- Arturo-Terranova D., Giraldo-Ocampo S., Castillo A. Molecular characterization of Epstein–Barr virus variants detected in the oral cavity of adolescents in Cali, Colombia. Biomedica, 2020, vol. 40, suppl. 1, pp. 76–88. doi: 10.7705/biomedica.4917
- Banko A., Lazarevic I., Stevanovic G., Cirkovic A., Karalic D., Cupic M., Banko B., Milovanovic J., Jovanovic T. Analysis of the Variability of Epstein–Barr Virus Genes in Infectious Mononucleosis: Investigation of the Potential Correlation with Biochemical Parameters of Hepatic Involvement. J. Med. Biochem., 2016, vol. 35, no. 3, pp. 337–346. doi: 10.1515/jomb-2015-0021
- Caves E.A., Butch R.M., Cook S.A., Wasil L.R., Chen C., Di Y.P., Lee N., Shair K.H.Y. Latent Membrane Protein 1 Is a Novel Determinant of Epstein–Barr Virus Genome Persistence and Reactivation. mSphere, 2017, vol. 2, no. 6: e00453-17. doi: 10.1128/mSphereDirect.00453-17
- Cheerathodi M.R., Meckes D.G. Jr. The Epstein–Barr virus LMP1 interactome: biological implications and therapeutic targets. Future Virol., 2018, vol. 13, nо. 12, pp. 863–887. doi: 10.2217/fvl-2018-0120
- Coleman C.B., Daud I.I., Ogolla S.O., Ritchie J.A., Smith N.A., Sumba P.O., Dent A.E., Rochford R. Epstein–Barr Virus Type 2 Infects T Cells in Healthy Kenyan Children. J. Infect. Dis., 2017, vol. 216, no. 6, pp. 670–677. doi: 10.1093/infdis/jix363
- Coleman C.B., Lang J., Sweet L.A., Smith N.A., Freed B.M., Pan Z., Haverkos B., Pelanda R., Rochford R. Epstein–Barr Virus Type 2 Infects T Cells and Induces B Cell Lymphomagenesis in Humanized Mice. J. Virol., 2018, vol. 92, no. 21: e00813-18. doi: 10.1128/JVI.00813-18
- Correa R.M., Fellner M.D., Durand K., Redini L., Alonio V., Yampolsky C., Colobraro A., Sevlever G., Teyssié A., Benetucci J., Picconi M.A. Barr virus genotypes and LMP-1 variants in HIV-infected patients. J. Med. Virol., 2007, vol. 79, no. 4, pp. 401–407. doi: 10.1002/jmv.20782
- Dandachi D., Morón F. Effects of HIV on the Tumor Microenvironment. Adv. Exp. Med. Biol., 2020, vol. 1263, pp. 45–54. doi: 10.1007/978-3-030-44518-8_4
- Edwards R.H., Seillier-Moiseiwitsch F., Raab-Traub N. Signature amino acid changes in latent membrane protein 1 distinguish Epstein–Barr virus strains. Virology, 1999, vol. 261, pp. 79–95. doi: 10.1006/viro.1999.9855
- Edwards R.H., Sitki-Green D., Moore D.T., Raab-Traub N. Potential selection of LMP1 variants in nasopharyngeal carcinoma. J. Virol., 2004, vol. 78, no. 2, pp. 868–881. doi: 10.1128/jvi.78.2.868-881.2004
- Gärtner B.C., Kortmann K., Schäfer M., Mueller-Lantzsch N., Sester U., Kaul H., Pees H. No correlation in Epstein–Barr virus reactivation between serological parameters and viral load. J. Clin. Microbiol., 2000, vol. 38, no. 6: 2458. doi: 10.1128/JCM.38.6.2458-2458.2000
- Gianella S., Massanella M., Wertheim J.O., Smith D.M. The Sordid Affair Between Human Herpesvirus and HIV. J. Infect. Dis., 2015, vol. 212, no. 6, pp. 845–852. doi: 10.1093/infdis/jiv148
- Giron L.B., Ramos da Silva S., Barbosa A.N., Monteiro de Barros Almeida R.A., Rosário de Souza Ld., Elgui de Oliveira D. Impact of Epstein–Barr virus load, virus genotype, and frequency of the 30 bp deletion in the viral BNLF-1 gene in patients harboring the human immunodeficiency virus. J. Med. Virol., 2013, vol. 85, no. 12, pp. 2110–2118. doi: 10.1002/jmv.23722
- Hu L.F., Zabarovsky E.R., Chen F., Cao S.L., Ernberg I., Klein G., Winberg G. Isolation and sequencing of the Epstein–Barr virus BNLF-1 gene (LMP1) from a Chinese nasopharyngeal carcinoma. J. Gen. Virol., 1991, vol. 72, no. 1, pp. 2399–2409. doi: 10.1099/0022-1317-72-10-2399
- Jen K.Y., Higuchi M., Cheng J., Li J., Wu L.Y., Li Y.F., Lin H.L., Chen Z., Gurtsevitch V., Fujii M., Saku T. Nucleotide sequences and functions of the Epstein–Barr virus latent membrane protein 1 genes isolated from salivary gland lymphoepithelial carcinomas. Virus Genes, 2005, vol. 3, no. 2, pp. 223–235. doi: 10.1007/s11262-004-5630-5
- Lang F., Pei Y., Lamplugh Z.L., Robertson E.S. Molecular Biology of EBV in Relationship to HIV/AIDS-Associated Oncogenesis. Cancer Treat. Res., 2019, vol. 177, pp. 81–103. doi: 10.1007/978-3-030-03502-0_4
- Lupo J., Germi R., Lancar R., Algarte-Genin M., Hendel-Chavez H., Taoufik Y., Mounier N., Partisani M., Bonnet F., Meyohas M.C., Marchou B., Filippova A., Prevot S., Costagliola D., Morand P., Besson C. Prospective evaluation of blood Epstein–Barr virus DNA load and antibody profile in HIV-related non-Hodgkin lymphomas. AIDS, 2021, vol. 35, no. 6, pp. 861–868. doi: 10.1097/QAD.0000000000002839
- Martini M., Capello D., Serraino D., Navarra A. Pierconti F., Cenci T., Gaidano G., Larocca L.M. Characterization of variants in the promoter of EBV gene BZLF1 in normal donors, HIV-positive patients and in AIDS-related lymphomas. J. Infect., 2007, vol. 54, no. 3, pp. 298–306. doi: 10.1016/j.jinf.2006.04.015
- Moorthy R.K., Thorley-Lawson D.A. Biochemical, genetic, and functional analyses of the phosphorylation sites on the Epstein–Barr virus-encoded oncogenic latent membrane protein LMP-1. J. Virol., 1993, vol. 67, no. 5, pp. 2637–2645. doi: 10.1128/JVI.67.5.2637-2645.1993
- Mujtaba S., Varma S., Sehgal S. Coinfection with epstein barr virus in north Indian patients with HIV/AIDS. Indian. J. Pathol. Microbiol., 2005, vol. 48, no. 3, pp. 349–353.
- Musukuma-Chifulo K., Siddiqi O.K., Chilyabanyama O.N., Bates M., Chisenga C.C., Simuyandi M., Sinkala E., Dang X., Koralnik I.J., Chilengi R., Munsaka S. Epstein–Barr Virus Detection in the Central Nervous System of HIV-Infected Patients. Pathogens, 2022, vol. 11, no. 10: 1080. doi: 10.3390/pathogens11101080
- Nawandar D.M., Ohashi M., Djavadian R., Barlow E., Makielski K., Ali A., Lee D., Lambert P.F., Johannsen E., Kenney S.C. Differentiation-Dependent LMP1 Expression Is Required for Efficient Lytic Epstein–Barr Virus Reactivation in Epithelial Cells. J. Virol., 2017, vol. 91, no. 8: e02438-16. doi: 10.1128/JVI.02438-16
- Pereira L.M.S., Dos Santos França E., Costa I.B., Lima I.T., Freire A.B.C., de Paula Ramos F.L., Monteiro T.A.F., Macedo O., Sousa R.C.M., Freitas F.B., Costa I.B., Vallinoto A.C.R. Epidemiological risk factors associated with primary infection by Epstein–Barr virus in HIV-1-positive subjects in the Brazilian Amazon region. Sci. Rep., 2021, vol. 11, no. 1: 18476. doi: 10.1038/s41598-021-97707-4
- Pereira L.M.S., França E.D.S., Costa I.B., Lima I.T., Freire A.B.C., Ramos F.L.P., Monteiro T.A.F., Macedo O., Sousa R.C.M., Freitas F.B., Brasil Costa I., Vallinoto A.C.R. Epstein–Barr Virus (EBV) Genotypes Associated with the Immunopathological Profile of People Living with HIV-1: Immunological Aspects of Primary EBV Infection. Viruses, 2022, vol. 14, no. 2: 168. doi: 10.3390/v1402016
- Petrara M.R., Penazzato M., Massavon W., Nabachwa S., Nannyonga M., Mazza A., Gianesin K., Del Bianco P., Lundin R., Sumpter C., Zanchetta M. Giaquinto C., De Rossi A. Epstein–Barr virus load in children infected with human immunodeficiency virus type 1 in Uganda. J. Infect. Dis., 2014, vol. 210, no. 3, pp. 392–399. doi: 10.1093/infdis/jiu099
- Sachithanandham J., Kannangai R., Pulimood S.A., Desai A., Abraham A.M., Abraham O.C., Ravi V., Samuel P., Sridharan G. Significance of Epstein–Barr virus (HHV-4) and CMV (HHV-5) infection among subtype-C human immunodeficiency virus-infected individuals. Indian J. Med. Microbiol., 2014, vol. 32, no. 3, pp. 261–269. doi: 10.4103/0255-0857.136558
- Salahuddin S., Azhar J., Akhtar H., Khan J., Muhammad N. Epstein–Barr virus epidemiology in HIV infected transsexuals. J. Pak. Med. Assoc., 2021, vol. 71, no. 8, pp. 1984–1988. doi: 10.47391/JPMA.02-339
- Smirnova K.V., Diduk S.V., Gurtsevitch V.E. The functional analysis of Epstein–Barr virus latent membrane proteins (LMP1) in patients with lymphoproliferative disorders. Biochem. Moscow Suppl. Ser. B, 2010, vol. 4, pp. 386–394. doi: 10.1134/S1990750810040116
- Traore L., Nikiema O., Ouattara A.K., Compaore T.R., Soubeiga S.T., Diarra B., Obiri-Yeboah D., Sorgho P.A., Djigma F.W., Bisseye C., Yonli A.T., Simpore J. EBV and HHV-6 Circulating Subtypes in People Living with HIV in Burkina Faso, Impact on CD4 T cell count and HIV Viral Load. Mediterr. J. Hematol. Infect. Dis., 2017, vol. 9, no. 1: e2017049. doi: 10.4084/MJHID.2017.049
- Tzellos S., Farrell P.J. Epstein–Barr virus sequence variation-biology and disease. Pathogens, 2012, vol. 1, no. 2, pp. 156–174. doi: 10.3390/pathogens1020156
- Vangipuram R., Tyring S.K. AIDS-Associated Malignancies. Cancer Treat. Res., 2019, vol. 177, pp. 1–21. doi: 10.1007/978-3-030-03502-0_1
- Wan Z., Chen Y., Hui J., Guo Y., Peng X., Wang M., Hu C., Xie Y., Su J., Huang Y., Xu X., Xu Y., Zhu B. Epstein–Barr virus variation in people living with human immunodeficiency virus in southeastern China. Virol. J., 2023, vol. 20, no. 1: 107. doi: 10.1186/s12985-023-02078-z
- Wang L., Ning S. New Look of EBV LMP1 Signaling Landscape. Cancers (Basel.), 2021, vol. 13, no. 21: 5451. doi: 10.3390/cancers13215451
- Whitehurst C.B., Rizk M., Teklezghi A., Spagnuolo R.A., Pagano J.S., Wahl A. HIV co-infection augments EBV-induced tumorigenesis in vivo. Front. Virol., 2022, vol. 2: 861628. doi: 10.3389/fviro.2022.861628
- WHO case definitions of HIV for surveillance and revised clinical staging and immunological classification of HIV-related disease in adults and children. Geneva: World Health Organization, 2007. 48 p.
- Xue W.Q., Wang T.M., Huang J.W., Zhang J.B., He Y.Q., Wu Z.Y., Liao Y., Yuan L.L., Mu J., Jia W.H. A comprehensive analysis of genetic diversity of EBV reveals potential high-risk subtypes associated with nasopharyngeal carcinoma in China. Virus Evol., 2021, vol. 7, no. 1: veab010. doi: 10.1093/ve/veab010
- Yao Q.Y., Croom-Carter D.S., Tierney R.J., Habeshaw G., Wilde J.T., Hill F.G., Conlon C., Rickinson A.B. Epidemiology of infection with Epstein–Barr virus types 1 and 2: lessons from the study of a T-cell-immunocompromised hemophilic cohort. J. Virol., 1998, vol. 72, no. 5, pp. 4352–4363. doi: 10.1128/JVI.72.5.4352-4363.1998
- Zealiyas K., Teshome S., Haile A.F., Weigel C., Alemu A., Amogne W., Yimer G., Abebe T., 1erhe N., Ahmed E.H., Baiocchi R.A. Genotype characterization of Epstein–Barr virus among adults living with human immunodeficiency virus in Ethiopia. Front. Microbiol., 2023, vol. 14: 1270824. doi: 10.3389/fmicb.2023.1270824
补充文件
