Phenotypic and genetic analysis of Klebsiella pneumoniae strains isolated from community-acquired pneumonia patients in Rostov-on-Don in 2021–2023
- 作者: Rykova V.A.1, Podladchikova O.N.1, Anisimova A.S.1, Aronova N.V.1, Vodopyanov A.S.1, Temyakova S.Y.1, Gudueva E.N.1
-
隶属关系:
- Rostov-on-Don Scientific Research Anti-Plague Institute of Rospotrebnadzor
- 期: 卷 14, 编号 6 (2024)
- 页面: 1104-1116
- 栏目: ORIGINAL ARTICLES
- URL: https://bakhtiniada.ru/2220-7619/article/view/283031
- DOI: https://doi.org/10.15789/2220-7619-PAG-17627
- ID: 283031
如何引用文章
全文:
详细
Introduction. Here, we present a study of 33 Klebsiella pneumoniae strains isolated in Rostov-on-Don in 2021–2023 from patients with community-acquired pneumonia. The bacterial strains were analyzed according to the traits known to be linked to hypervirulence. The aim of the study was to compare of the strains by analyzing phenotypic (siderophore activity, hypermucoviscosity, bacteriophage sensitivity) and genotypic (presence of plasmids, siderophore genes, and rmpA and rmpA2 genes) properties. Materials and methods. Assessment of bacteriophage sensitivity, hypermucoviscosity using “string test”, siderophore activity on chrome azurol S containing plates, high-molecular weight plasmids content, and whole-genome sequencing. Results. Sequencing of 11 strains differing in mucoviscosity allowed to establish that all hypermucoviscous strains contained the rmpA gene, whereas the rmpA2 gene was either absent or contained single nucleotide insertions or deletions, leading to a reading frame shift. The same mutations in rmpA2 were observed in non-mucoviscous strains, all of which lacked the rmpA gene. The strains differed by the presence of four siderophore clusters, the number of which did not correlate with the siderophore activity. The lack of rmpA and salmochelin biosynthesis genes but presence of its receptor gene in the non-mucoviscous strains suggest that they have deletions, leading to the loss of the hypermucoviscous phenotype. A study of 33 strains showed that they were able to dissociate, forming dark and light colonies, which were observed in both hypermucoviscous and non-hypermucoviscous strains. In dark but not light clones obtained from hypermucoviscous strains, this property was preserved. In contrast, both clone variants of non-hypermucoviscous strains retained this property. An analysis of different clones of 17 strains showed that dark vs light clones had reduced siderophore activity and bacteriophage sensitivity. The clone genomes did not differ in the siderophore clusters, but rmpA was revealed only in the dark clones of hypermucoviscous strains. In non-mucoviscous strains, this gene was not found in both clones, whereas differences in siderophore activity and bacteriophage sensitivity were preserved. Conclusion. K. pneumoniae hypermucoviscosity phenotype is associated with the presence of at least the rmpA, while intact rmpA2 is not required. The differences in the colony morphology, clone siderophore activity, and bacteriophage sensitivity are not related to rmpA and rmpA2, but rather result from an unknown yet mechanism.
作者简介
Violetta Rykova
Rostov-on-Don Scientific Research Anti-Plague Institute of Rospotrebnadzor
编辑信件的主要联系方式.
Email: violletryk@gmail.com
PhD (Biology), Researcher, Laboratory of Natural Focal and Zoonotic Infections
俄罗斯联邦, Rostov-on-DonO. Podladchikova
Rostov-on-Don Scientific Research Anti-Plague Institute of Rospotrebnadzor
Email: violletryk@gmail.com
PhD (Chemistry), Senior Researcher, Laboratory of Natural Focal and Zoonotic Infections
俄罗斯联邦, Rostov-on-DonA. Anisimova
Rostov-on-Don Scientific Research Anti-Plague Institute of Rospotrebnadzor
Email: violletryk@gmail.com
Junior Researcher, Laboratory of Natural Focal and Zoonotic Infections
俄罗斯联邦, Rostov-on-DonN. Aronova
Rostov-on-Don Scientific Research Anti-Plague Institute of Rospotrebnadzor
Email: violletryk@gmail.com
PhD (Biology), Senior Researcher, Laboratory of Natural Focal and Zoonotic Infections
俄罗斯联邦, Rostov-on-DonA. Vodopyanov
Rostov-on-Don Scientific Research Anti-Plague Institute of Rospotrebnadzor
Email: violletryk@gmail.com
PhD (Medicine), Leading Researcher, Molecular Biology Laboratory of Natural Focal and Zoonotic Infections
俄罗斯联邦, Rostov-on-DonS. Temyakova
Rostov-on-Don Scientific Research Anti-Plague Institute of Rospotrebnadzor
Email: violletryk@gmail.com
Junior Researcher, Molecular Biology Laboratory of Natural Focal and Zoonotic Infections
俄罗斯联邦, Rostov-on-DonE. Gudueva
Rostov-on-Don Scientific Research Anti-Plague Institute of Rospotrebnadzor
Email: gudueva_en@antiplague.ru
Junior Researcher, Laboratory “Collection of Pathogenic Microorganisms”
俄罗斯联邦, Rostov-on-Don参考
- Агеевец В.A., Агеевец И.В., Сидоренко С.В. Конвергенция множественной резистентности и гипервирулентности у Klebsiella pneumoniae // Инфекция и иммунитет. 2022. Т. 12, № 3. C. 450–460. [Ageevets V.A., Ageevets I.V., Sidorenko S.V. Convergence of multiple resistance and hypervirulence in Klebsiella pneumonia. Infektsiya i immunitet = Russian Journal of Infection and Immunity, 2022, vol. 12, no. 3, pp. 450–460. (In Russ.)] doi: 10.15789/2220-7619-COM-1825
- Анисимова А.С., Павлович Н.В., Аронова Н.В., Цимбалистова М.В., Гудуева Е.Н., Пасюкова Н.И., Теплякова Е.Д., Носков А.К. Биологические свойства и антибиотикорезистентность Klebsiella pneumoniae и ее роль в этиологической структуре возбудителей внебольничных пневмоний // Антибиотики и химиотерапия. 2023. Т. 68, № 5–6. С. 11–18. [Anisimova A.S., Pavlovich N.V., Aronova N.V., Tsimbalistova M.V., Gudueva E.N., Pasyukova N.I., Teplyakova E.D., Noskov A.K. Biological properties and antibiotic resistance of Klebsiella pneumonia and its role in the etiological structure of community-acquired pneumonia pathogens. Antibiotiki i khimioterapiya = Antibiotics and Chemotherapy, 2023, vol. 68 (5–6), pp. 11–18. (In Russ.)] doi: 10.37489/0235-2990-2023-68-5-6-11-18
- Водопьянов А.С., Трухачев А.Л., Подладчикова О.Н., Писанов Р.В. СontigSearcher — программа для анализа результатов полногеномного секвенирования, определение наличия последовательностей различных генов в контигах, полученных при секвенировании, выявления INDEL-мутаций. Свидетельство о государственной регистрации программы для ЭВМ № 2018611348 от 01.02.2018. [Vodopyanov A.S., Trukhachev A.L., Podladchikova O.N., Pisanov R.V. ContigSearcher — a program for analyzing the results of whole-genome sequencing, determining the presence of sequences of various genes in the contigues obtained during sequencing, and detecting INDEL mutations. Certificate of state registration of the computer program No. 2018611348 dated 02/01/2018. (In Russ.)]
- Кузнецова Д.А., Водопьянов А.С., Подладчикова О.Н., Рыкова В.А., Трухачев А.Л. «SiderophoreAnalyzer» — программа для выявления генов, отвечающих за синтез сидерофоров, в полногеномных нуклеотидных последовательностях. Свидетельство о государственной регистрации программы для ЭВМ № 2022680676 от 03.08.2022 г. [Kuznetsova D.A., Vodopyanov A.S., Podladchikova O.N., Rykova V.A., Trukhachev A.L. «SiderophoreAnalyzer» — a program for identifying genes responsible for the synthesis of siderophores in whole-genome nucleotide sequences. Certificate of state registration of the computer program No. 2022680676 dated 08/03/2022. (In Russ.)]
- Методические указания для работы на приборах серии flex компании Bruker Daltonics. Прямое белковое профилирование. М., 2010. [MU for operation on Bruker Daltonics flex series devices “Direct protein profiling”. Moscow, 2010. (In Russ.)]
- Использование метода времяпролетной масс-спектрометрии с матрично-активированной лазерной десорбцией/ионизацией (MALDI-ToF MS) для индикации и идентификации возбудителей I–II групп патогенности: методические указания МУК 4.2.0089-14. [The use of time-of-flight mass spectrometry with matrix-assisted laser desorption/ionization (MALDI-ToF MS) for the indication and identification of pathogens of pathogenicity groups I–II: Methodological guidelines MUC 4.2.0089-14. (In Russ.)]
- Чеботарь И.В., Бочарова Ю.А., Подопригора И.В., Шагин Д.А. Почему Klebsiella pneumoniae становится лидирующим оппортунистическим патогеном // Клиническая микробиология и антимикробная химиотерапия. 2020. Т. 22, № 1. С. 4–19. [Chebotar I.V., Bocharova Yu.A., Podoprigora I.V., Shagin D.A. The reasons why Klebsiella pneumoniae becomes a leading opportunistic pathogen. Klinicheskaya mikrobiologiya i antimikrobnaya khimioterapiya = Clinical Microbiology and Antimicrobial Chemotherapy, 2020, vol. 22, no. 1, pp. 4–19. (In Russ.)] doi: 10.36488/cmac.2020.1.4-19
- Bialek-Davenet S., Criscuolo A., Ailloud F., Passet V., Jones L., Delannoy-Vieillard A.S., Garin B., Le Hello S., Arlet G., Nicolas-Chanoine M.H., Decré D., Brisse S. Genomic definition of hypervirulent and multidrug-resistant Klebsiella pneumoniae clonal groups. Emerg. Infect. Dis., 2014, vol. 20, no. 11, рр. 1812–1820. doi: 10.3201/eid2011.140206
- Dai P., Hu D. The making of hypervirulent Klebsiella pneumoniae. J. Clin. Lab. Anal., 2022, vol. 36, no. 12: e24743. doi: 10.1002/jcla.24743
- Ernst C.M., Braxton J.R., Rodriguez-Osorio C.A., Zagieboylo A.P., Li L., Pironti A., Manson A.L., Nair A.V., Benson M., Cummins K., Clatworthy A.E., Earl A.M., Cosimi L.A., Hung D.T. Adaptive evolution of virulence and persistence in carbapenem-resistant Klebsiella pneumoniae. Nat. Med., 2020, vol. 26, pp. 705–711. doi: 10.1038/s41591-020-0825-4
- Guo Y., Wang S., Zhan L., Jin Y., Duan J., Hao Z., Lv J., Qi X., Chen L., Kreiswirth B.N., Wang L., Yu F. Microbiological and clinical characteristics of hypermucoviscous Klebsiella pneumoniae isolates associated with invasive infections in China. Front. Cell. Infect. Microbiol., 2017, vol. 7: 24. doi: 10.3389/fcimb.2017.00024
- Harada S., Aoki K., Yamamoto S., Ishii Y., Sekiya N., Kurai H., Furukawa K., Doi A., Tochitani K., Kubo K., Yamaguchi Y., Narita M., Kamiyama S., Suzuki J., Fukuchi T., Gu Y., Okinaka K., Shiiki S., Hayakawa K., Tachikawa N., Kasahara K., Nakamura T., Yokota K., Komatsu M., Takamiya M., Tateda K., Doi Y. Clinical and molecular characteristics of Klebsiella pneumoniae isolates causing bloodstream infections in Japan: occurrence of hypervirulent infections in health care. J. Clin. Microbiol., 2019, vol. 57, no. 11: e01206-19. doi: 10.1128/JCM.01206-19
- Holden V.I., Breen P., Houle S., Dozois C.M., Bachman M.A. Klebsiella pneumoniae siderophores induce inflammation, bacterial dissemination, and HIF-1a stabilization during pneumonia. mBio, 2016, vol. 7, no. 5: e01397-16. doi: 10.1128/mBio.01397-16
- Imai K., Ishibashi N., Kodana M., Tarumoto N., Sakai J., Kawamura T., Takeuchi S., Taji Y., Ebihara Y., Ikebuchi K., Murakami T., Maeda T., Mitsutake K., Maesaki S. Clinical characteristics in blood stream infections caused by Klebsiellapneumoniae, Klebsiella variicola, and Klebsiella quasipneumoniae: a comparative study, Japan, 2014–2017. BMC Infect. Dis., 2019, vol. 19, no. 1: 946. doi: 10.1186/s12879-019-4498-x
- Jia X., Zhu Y., Jia P., Liu X., Yu W., Li X., Xu Y., Yang Q. Emergence of a superplasmid coharboring hypervirulence and multidrug resistance genes in Klebsiella pneumoniae poses new challenges to public health. Microbiol. Spectr., 2022, vol. 10, no. 6: e0263422. doi: 10.1128/spectrum.02634-22
- Kado C.I., Liu S.T. Rapid procedure for detection and isolation of large and small plasmids. J. Bacteriol., 1981, vol. 145, no. 3, pp. 1365–1373. doi: 10.1128/jb.145.3.1365-1373.1981
- Khadka S., Ring B.E., Walker R.S., Krzeminski L.R., Pariseau D.A., Hathaway M., Mobley H.L.T., Mike L.A. Urine-mediated suppression of Klebsiella pneumoniae mucoidy is counteracted by spontaneous Wzc variants altering capsule chain length. mSphere., 2023, vol. 8, no. 5: e0028823. doi: 10.1128/msphere.00288-23
- Lam M.M.C., Wyres K.L., Judd L.M., Wick R.R., Jenney A., Brisse S., Holt K.E. Tracking key virulence loci encoding aerobactin and salmochelin siderophore synthesis in Klebsiella pneumonia. Genome Med., 2018, vol. 10, no. 1: 77. doi: 10.1186/s13073-018-0587-5
- Lawlor M.S., O’Connor C., Miller V.L. Yersiniabactin is a virulence factor for Klebsiella pneumoniae during pulmonary infection. Infect Immun., 2007, vol. 75, no. 3, pp. 1463–1472. doi: 10.1128/IAI.00372-06
- Mike L.A., Stark A.J., Forsyth V.S., Vornhagen J., Smith S.N., Bachman M.A., Mobley H.L.T. A systematic analysis of hypermucoviscosity and capsule reveals distinct and overlapping genes that impact Klebsiella pneumoniae fitness. PLoS Pathog., 2021, vol. 17, no. 3: e1009376. doi: 10.1371/journal.ppat.1009376
- Namikawa H., Niki M., Niki M., Oinuma K.I., Yamada K., Nakaie K., Tsubouchi T., Tochino Y., Takemoto Y., Kaneko Y., Kakeya H., Shuto T. Siderophore production as a biomarker for Klebsiella pneumoniae strains that cause sepsis: а pilot study. J. Formos Med. Assoc., 2022, vol. 121, no. 4, pp. 848–855. doi: 10.1016/j.jfma.2021.06.027
- Nucci A., Janaszkiewicz J., Rocha E.P.C., Rendueles O. Emergence of novel non-aggregative variants under negative frequency-dependent selection in Klebsiella variicola. Microlife, 2023, vol. 4: uqad038. doi: 10.1093/femsml/uqad038
- Russo T.A., Marr C.M. Hypervirulent Klebsiella pneumoniae. Clin. Microbiol. Rev., 2019, vol. 32, pp. 1–42. doi: 10.1128/CMR.00001-19
- Russo T.A., Olson R., Macdonald U., Metzger D., Maltese L.M., Drake E.J., Gulick A.M. Aerobactin mediates virulence and accounts for increased siderophore production under iron-limiting conditions by hypervirulent (hypermucoviscous) Klebsiella pneumoniae. Infect. Immun., 2014, vol. 82, no. 6, pp. 2356–2367. doi: 10.1128/IAI.01667-13
- Russo T.A., Olson R., Fang C.T., Stoesser N., Miller M., MacDonald U., Hutson A., Barker J.H., La Hoz R.M., Johnson J.R. Identification of biomarkers for differentiation of hypervirulent Klebsiella pneumoniae from classical K. pneumoniae. J. Clin. Microbiol., 2018, vol. 56, no. 9: e00776-18. doi: 10.1128/JCM.00776-18
- Russo T.A., Shon A.S., Beanan J.M., Olson R., MacDonald U., Pomakov A.O., Visitacion M.P. Hypervirulent K. pneumoniae secretes more and more active iron-acquisition molecules than “classical” K. pneumoniae thereby enhancing its virulence. PLoS One, 2011, vol. 6, no. 10: e26734. doi: 10.1371/journal.pone.0026734
- Schwyn B., Neilands J.B. Universal chemical assay for the detection and determination of siderophores. Anal. Biochem., 1987, vol. 160, no. 1, pp. 47–56. doi: 10.1016/0003-2697(87)90612-9
- Shukla S., Joshi P., Trivedi P., Akinwotu O., Gajjar D. Genomic islands in Klebsiella pneumoniae. In: Microbial genomic islands in adaptation and pathogenicity. Eds: Mani I., Singh V., Alzahrani K.J., Chu D.T. Springer, Singapore, 2023, pp. 255–278. doi: 10.1007/978-981-19-9342-8_13
- Walker K.A., Miller V.L. The intersection of capsule gene expression, hypermucoviscosity and hypervirulence in Klebsiella pneumoniae. Curr. Opin. Microbiol., 2020, vol. 54, pp. 95–102. doi: 10.1016/j.mib.2020.01.006
- Walker K.A., Miner T.A., Palacios M., Trzilova D., Frederick D.R., Broberg C.A., Sepúlveda V.E., Quinn J.D., Miller V.L., Goldberg J.B. A Klebsiella pneumoniae regulatory mutant has reduced capsule expression but retains hypermucoviscosity. mBio, 2019, vol. 10: e00089-19. doi: 10.1128/mBio.00089-19
- Walker K.A., Treat L.P., Sepúlveda V.E., Miller V.L., Heran Darwin K. The small protein RmpD drives hypermucoviscosity in Klebsiella pneumoniae. mBio, 2020, vol. 11: e01750-20. doi: 10.1128/mBio.01750-20
- Zhu J., Wang T., Chen L., Du H. Virulence factors in hypervirulent Klebsiella pneumonia. Front. Microbiol., 2021, vol. 12, pp. 1–14. doi: 10.3389/fmicb.2021.642484
补充文件
