Analysis of temperature, humidity, rainfall, and wind velocity on dengue hemorrhagic fever in Bandung municipality
- Authors: Sutriyawan A.1, Kurniati N.2, Novianti N.2, Farida U.3, Yusanti L.2, Destriani S.2, Saputra M.4
-
Affiliations:
- Bhakti Kencana University
- University of Bengkulu
- Bhakti Wiyata Institute of Health Sciences
- Baitul Hikmah Nursing Academy
- Issue: Vol 14, No 1 (2024)
- Pages: 155-162
- Section: ORIGINAL ARTICLES
- URL: https://bakhtiniada.ru/2220-7619/article/view/256776
- DOI: https://doi.org/10.15789/2220-7619-AOT-2110
- ID: 256776
Cite item
Full Text
Abstract
The trend of dengue hemorrhagic fever prevalence every year continues to show an increase and number of deaths. This is due to an increase in the population of aedes aegypti mosquitoes. Climate change has the potential to affect mosquito-borne diseases, including dengue fever, which is a vulnerability for residents in Bandung Municipality. This research aims to analyse the relationship between temperature, humidity, rainfall, and wind velocity with dengue hemorrhagic fever in Bandung Municipality. The methodology research used in this study is descriptive analysis with a cross-sectional approach. This research was conducted in Bandung Municipality. The study samples were taken from data on dengue hemorrhagic fever sufferers, as well as data on temperature, humidity, rainfall, and wind speed. This study used secondary data. The data collected is in the form of data on temperature, humidity, rainfall, and wind speed, and the number of cases. To assess the correlation between variables using the person correlation test. To test the effect of all four variables simultaneously on the incidence of dengue hemorrhagic fever using a linear regression test. Average value of air temperature is 25.8°C, air humidity is 69.9%, rainfall is 201.5 mm, and the wind velocity is 1.8 knots. The prevalence of dengue hemorrhagic fever is 232.5 cases. There is a significant relationship between humidity with dengue hemorrhagic fever prevalency (p = 0.018, r = 0.873). Wind velocity with dengue hemorrhagic fever prevalency (p = 0.018, r = 0.629). The result of the coefficient of determination test on temperature, humidity, rainfall, and wind velocity with DHF cases is R2 = 0.745. The increase in dengue prevalence in Bandung City occurred from January to June, the decrease in prevalence occurred from July to December. Variations in temperature, humidity, rainfall and wind speed can simultaneously affect the incidence of dengue fever in Bandung. Therefore, in the future it is necessary to increase mosquito nest eradication activities to prevent dengue transmission considering that this disease has the potential to spread at any time.
Keywords
Full Text
##article.viewOnOriginalSite##About the authors
A. Sutriyawan
Bhakti Kencana University
Author for correspondence.
Email: agung.epid@gmail.com
SKM, MPH, Assistant Professor, Department of Public Health
Indonesia, BandungN. Kurniati
University of Bengkulu
Email: agung.epid@gmail.com
S.ST., S.KM., M.Tr.Keb, Assistant Professor, Department of Midwifery
Indonesia, BengkuluNovianti Novianti
University of Bengkulu
Email: agung.epid@gmail.com
S.ST., M.Keb, Department of Midwifery
Indonesia, BengkuluU. Farida
Bhakti Wiyata Institute of Health Sciences
Email: agung.epid@gmail.com
apt., M.Farm, Assistant Professor, Department of Pharmacy
Indonesia, KediriL. Yusanti
University of Bengkulu
Email: agung.epid@gmail.com
S.ST., M.Keb, Assistant Professor, Department of Midwifery
Indonesia, BengkuluS.N. Destriani
University of Bengkulu
Email: agung.epid@gmail.com
S.ST., M.Keb, Assistant Professor, Department of Midwifery
Indonesia, BengkuluM.K.F. Saputra
Baitul Hikmah Nursing Academy
Email: agung.epid@gmail.com
S.Kep., Ns., M.Kep, Lecturer, Department of Nursing
Indonesia, Bandar LampungReferences
- Anwar A., Ariati J. Dengue hemorrhagic fever (DHF) prediction model based on climate factors in Bogor city, West Java. Indonesian Bulletin of Health Research, 2014, vol. 42, no. 4: 20092. doi: 10.22435/bpk.v42i4 Des.3663.249-256
- Carrington L.B., Armijos M.V., Lambrechts L., Barker C.M., Scott T.W. Effects of fluctuating daily temperatures at critical thermal extremes on Aedes aegypti life-history traits. PLoS One, 2013, vol. 8, no. 3: e58824. doi: 10.1371/journal.pone.0058824
- Chang L.H., Hsu E.L., Teng H.J., Ho C.M. Differential survival of Aedes aegypti and Aedes albopictus (Diptera: Culicidae) larvae exposed to low temperatures in Taiwan. J. Med. Entomol., 2007, vol. 44, no. 2, pp. 205–210. doi: 10.1603/0022-2585(2007)44[205:dsoaaa]2.0.co;2
- Chen Y., Yang Z., Jing Q., Huang J., Guo C., Yang K., Chen A., Lu J. Effects of natural and socioeconomic factors on dengue transmission in two cities of China from 2006 to 2017. Sci. Total Environ., 2020, vol. 724: 138200. doi: 10.1016/j.scitotenv.2020.138200
- Cheng J., Bambrick H., Frentiu F.D., Devine G., Yakob L., Xu Z., Li Z., Yang W., Hu W. Extreme weather events and dengue outbreaks in Guangzhou, China: a time-series quasi-binomial distributed lag non-linear model. Int. J. Biometeorol., 2021, vol. 65, no. 7, pp. 1033–1042. doi: 10.1007/s00484-021-02085-1
- Dhimal M., Gautam I., Joshi H.D., O’Hara R.B., Ahrens B., Kuch U. Risk factors for the presence of chikungunya and dengue vectors (Aedes aegypti and Aedes albopictus), their altitudinal distribution and climatic determinants of their abundance in central Nepal. PLoS Negl. Trop. Dis., 2015, vol. 9, no. 3: e0003545. doi: 10.1371/journal.pntd.0003545
- Ferreira-de-Lima V.H., Lima-Camara T.N. Natural vertical transmission of dengue virus in Aedes aegypti and Aedes albopictus: a systematic review. Parasit. Vectors, 2018, vol. 11, no. 1: 77. doi: 10.1186/s13071-018-2643-9
- Fuller D.O., Troyo A., Beier J.C. El Niño Southern Oscillation and vegetation dynamics as predictors of dengue fever cases in Costa Rica. Environ. Res. Lett., 2009, vol. 4, pp. 140111–140118. doi: 10.1088/1748-9326/4/1/014011
- Fouque F., Carinci R., Gaborit P., Issaly J., Bicout D.J., Sabatier P. Aedes aegypti survival and dengue transmission patterns in French Guiana. J. Vector Ecol., 2006, vol. 31, no. 2, pp. 390–399. doi: 10.3376/1081-1710(2006)31[390:aasadt]2.0.co;2
- Gan S.J., Leong Y.Q., Bin Barhanuddin M.F.H., Wong S.T., Wong S.F., Mak J.W., Ahmad R.B. Dengue fever and insecticide resistance in Aedes mosquitoes in Southeast Asia: a review. Parasit. Vectors, 2021, vol. 14, no. 1: 315. doi: 10.1186/s13071-021-04785-4
- Hidayati L., Hadi U.K., Soviana S. Dengue hemorrhagic fever incidence in Sukabumi City according to climate condition. Acta Vet. Indones., 2017, vol. 5, no. 1, pp. 22–28.
- Hii Y.L., Rocklöv J., Ng N., Tang C.S., Pang F.Y., Sauerborn R. Climate variability and increase in intensity and magnitude of dengue incidence in Singapore. Glob. Health Action, 2009, no. 2. doi: 10.3402/gha.v2i0.2036
- Indriani C., Ahmad R.A., Wiratama B.S., Arguni E., Supriyati E., Sasmono R.T., Kisworini F.Y., Ryan P.A., O’Neill S.L., Simmons C.P., Utarini A., Anders K.L. Baseline characterization of dengue epidemiology in Yogyakarta City, Indonesia, before a randomized controlled trial of wolbachia for arboviral disease control. Am. J. Trop. Med. Hyg., 2018, vol. 99, no. 5, pp. 1299–1307. doi: 10.4269/ajtmh.18-0315
- Ishak N.I., Kasman K. The effect of climate factors for dengue hemorrhagic fever in Banjarmasin City, South Kalimantan Province, Indonesia, 2012–2016. Public Heal. Indones., 2018, vol. 4, no. 3, pp. 121–128.
- Islam S., Haque C.E., Hossain S., Hanesiak J. Climate variability, dengue vector abundance and dengue fever cases in Dhaka, Bangladesh: a time-series study. Atmosphere (Basel)., 2021, vol. 12, no. 7: 905. doi: 10.3390/atmos12070905
- Jahan Y., Rahman A. Management of dengue hemorrhagic fever in a secondary level hospital in Bangladesh: a case report. IDCases, 2020, vol. 21: e00880. doi: 10.1016/j.idcr.2020.e00880
- Johansson M.A., Dominici F., Glass G.E. Local and global effects of climate on dengue transmission in Puerto Rico. PLoS Negl. Trop. Dis., 2009, vol. 3, no. 2: e382. doi: 10.1371/journal.pntd.0000382
- Kusnoputranto H., Sintorini M.M., Utomo S.W., Aliyyah E.R.K.S.N., Pratiwi O.A. Dynamic transmission of dengue hemorraghic fever and climate variability patterns in Depok and Bogor. Indian J. Public Health Res. Dev., 2020, vol. 11, no. 6, pp. 1263–1266.
- Mekuriaw W., Kinde S., Kindu B., Mulualem Y., Hailu G., Gebresilassie A., Sisay C., Bekele F., Amare H., Wossen M., Woyessa A., Cross C.L., Messenger L.A. Epidemiological, entomological, and climatological investigation of the 2019 dengue fever outbreak in Gewane district, Afar region, North-East Ethiopia. Insects, 2022, vol. 13, no. 11: 1066. doi: 10.3390/insects13111066
- Ministry of Health R.I. Indonesia’s Health Profile in 2019. Ministry of Health R.I., 2020. URL: https://www.kemkes.go.id/downloads/resources/download/pusdatin/profil-kesehatan-indonesia/Profil-Kesehatan-Indonesia-2019.pdf
- Monintja T.C.N., Arsin A.A., Amiruddin R., Syafar M. Analysis of temperature and humidity on dengue hemorrhagic fever in Manado Municipality. Gac Sanit., 2021, vol. 35, suppl. 2, pp. S330–S333. doi: 10.1016/j.gaceta.2021.07.020
- Nugraha F., Haryanto B., Wulandari R.A., Pakasi T.T. Ecological study of the relationship between dengue hemorrhagic fever (DHF) and climate factors in the administrative city of Central Jakarta, Indonesia, 1999–2018. Jurnal Ilmu Kesehatan Masyarakat, 2021, vol. 10, no. 3, pp. 142–148.
- Reiner R.C. Jr., Stoddard S.T., Vazquez-Prokopec G.M., Astete H., Perkins T.A., Sihuincha M., Stancil J.D., Smith D.L., Kochel T.J., Halsey E.S., Kitron U., Morrison A.C., Scott T.W. Estimating the impact of city-wide Aedes aegypti population control: an observational study in Iquitos, Peru. PLoS Negl. Trop. Dis., 2019, vol. 13, no. 5: e0007255. doi: 10.1371/journal.pntd.0007255
- Ridha M.R., Indriyati L., Tomia A., Juhairiyah J. The effect of climate on the incidence of dengue hemorrhagic fever in the city of Ternate. Spirakel, 2019, vol. 11, no. 2, pp. 53–62
- Saputro D.R.S., Widyaningsih Y., Widyaningsih P., Sutanto, Widiastuti. Spatio-temporal patterns of dengue hemorrhagic fever (DHF) cases with local indicator of spatial association (LISA) and cluster map at areas risk in Java-Bali Indonesia. AIP Conference Proceedings, 2021, vol. 2326, no. 1: 020027. doi: 10.1063/5.0040334
- Sutriyawan A., Herdianti H., Cakranegara P.A., Lolan Y.P., Sinaga Y. Predictive index using receiver operating characteristic and trend analysis of dengue hemorrhagic fever incidence. Open Access Maced J. Med. Sci., 2022, vol. 10, no. E, pp. 681–687. doi: 10.3889/oamjms.2022.8975
- Simo Tchetgna H., Sado Yousseu F., Kamgang B., Tedjou A., McCall P.J., Wondji C.S. Concurrent circulation of dengue serotype 1, 2 and 3 among acute febrile patients in Cameroon. PLoS Negl. Trop. Dis., 2021, vol. 15, no. 10: e0009860. doi: 10.1371/journal.pntd.0009860
- Thamrin Y., Pisaniello D., Guerin C., Rothmore P. Correlates of work-study conflict among international students in Australia: a multivariate analysis. Int. J. Environ. Res. Public Health, 2019, vol. 16, no. 15: 2695. doi: 10.3390/ijerph16152695
- Tsuda Y., Takagi M. Survival and development of Aedes aegypti and Aedes albopictus (Diptera: Culicidae) larvae under a seasonally changing environment in Nagasaki, Japan. Environ Entomol., 2021, vol. 30, no. 5, pp. 855–860. doi: 10.1603/0046-225X-30.5.855
- Valdez L.D., Sibona G.J., Condat C.A. Impact of rainfall on Aedes aegypti populations. Ecol. Modell., 2018, vol. 385, pp. 96–105. doi: 10.1016/j.ecolmodel.2018.07.003
- Widawati M., Fuadiyah M.E.A. Climate factors influence the incidence of dengue hemorrhagic fever in Cimahi City in 2004-2013. Spirakel, 2018. vol. 10, no. 2, pp. 86–96
- Williams C.R., Mincham G., Ritchie S.A., Viennet E., Harley D. Bionomic response of Aedes aegypti to two future climate change scenarios in far north Queensland, Australia: implications for dengue outbreaks. Parasit. Vectors, 2014, vol. 7: 447. doi: 10.1186/1756-3305-7-447
- Wirayoga M.A. Hubungan kejadian demam berdarah dengue dengan Iklim di Kota Semarang tahun 2006–2011. Unnes Journal of Public Health., 2013, vol. 2, no. 4, pp. 1–9.
- Wiyono L., Rocha I.C.N., Cedeño T.D.D., Miranda A.V., Lucero-Prisno Iii D.E. Dengue and COVID-19 infections in the ASEAN region: a concurrent outbreak of viral diseases. Epidemiol. Health, 2021, vol. 43: e2021070. doi: 10.4178/epih.e2021070
- Wu P.C., Guo H.R., Lung S.C., Lin C.Y., Su H.J. Weather as an effective predictor for occurrence of dengue fever in Taiwan. Acta Trop., 2007, vol. 103, no. 1, pp. 50–57. doi: 10.1016/j.actatropica.2007.05.014
- Xu H.Y., Fu X., Lee L.K., Ma S., Goh K.T., Wong J., Habibullah M.S., Lee G.K., Lim T.K., Tambyah P.A., Lim C.L., Ng L.C. Statistical modeling reveals the effect of absolute humidity on dengue in Singapore. PLoS Negl. Trop. Dis., 2014, vol. 8, no. 5: e2805. doi: 10.1371/journal.pntd.0002805
- Xu L., Stige L.C., Chan K.S., Zhou J., Yang J., Sang S., Wang M., Yang Z., Yan Z., Jiang T., Lu L., Yue Y., Liu X., Lin H., Xu J., Liu Q., Stenseth N.C. Climate variation drives dengue dynamics. Proc. Natl Acad. Sci. USA, 2017, vol. 114, no. 1, pp. 113–118. doi: 10.1073/pnas.1618558114
- Yang H.M., Macoris M.L., Galvani K.C., Andrighetti M.T., Wanderley D.M. Assessing the effects of temperature on the population of Aedes aegypti, the vector of dengue. Epidemiol. Infect., 2009, vol. 137, no. 8, pp. 1188–1202. doi: 10.1017/S0950268809002040
Supplementary files
