Связь исходов интенсивной фазы терапии у больных с впервые выявленным инфильтративным туберкулезом легких с активностью ферментов пуринового метаболизма и численностью популяции лимфоцитов CD3+CD8+

Обложка

Цитировать

Полный текст

Аннотация

Мониторинг активности воспалительного процесса, субпопуляций лимфоцитов может уже на ранних этапах лечения помочь оценить эффективность интенсивной фазы терапии (ИФТ). Цель исследования — определить связь изменения концентрации и активности ферментов, связанных с метаболизмом пуринов, и субпопуляционного состава лимфоцитов крови с эффективностью ИФТ у больных с впервые выявленным инфильтративным туберкулезом легких (ИТЛ).

Материалы и методы. У 141 обследованного больного с верифицированным диагнозом ИТЛ результаты ИФТ представлены в следующих градациях: «значительное улучшение» — исчезновение симптомов интоксикации, абациллирование, закрытие полостей распада; «менее выраженное улучшение» — ликвидация симптомов интоксикации, абациллирование, выраженное рассасывание очаговых и инфильтративных изменений, уменьшение полостей распада. Оценивали активность аденозиндезаминазы в сыворотке крови (eADA-1, 2), мононуклеарах и нейтрофилах, концентрацию экто-5'-нуклеотидазы (eNT5E) в сыворотке крови, CD26 (DPPIV) в сыворотке (s, растворимая форма) и мононуклеарах (m, мембранная форма), субпопуляционный состав лимфоцитов.

Результаты. У больных ИТЛ выявлено увеличение концентрации eNT5E, mCD26 (DPPIV), активности eADA-2 и напротив, снижение внутриклеточной активности ADA-1. В ходе ИФТ отмечалось повышение концентрации sCD26 (DPPIV) в группе «менее выраженное улучшение». Исследуемые группы различались по количеству лимфоцитов и доле CD3+CD8+ лимфоцитов. Кроме того, активность eADA-2, более высокая у больных группы «менее выраженное улучшение», еще возросла после ИФТ, чего не наблюдалось у больных группы «значительное улучшение». Концентрация mCD26 (DPPIV) была выше у больных группы «значительное улучшение» до начала терапии, и, хотя в группе «менее выраженное улучшение» после ИФТ этот показатель увеличился, он все же оставался ниже, чем в группе сравнения.

Заключение. Таким образом, исход ИФТ у больных ИТЛ связан с распределением популяций Т-лимфоцитов в крови и изменением активности ферментов пуринового метаболизма. Исследование eADA-2, CD26 (DPPIV) в мембранной и растворимой формах и относительное количество CD3+CD8+ Т-лимфоцитов в периферической крови на ранних этапах терапии может дать необходимую информацию для коррекции персонализированной патогенетической терапии больных впервые выявленным ИТЛ.

Об авторах

М. Е. Дьякова

ФГБУ Санкт-Петербургский научно-исследовательский институт фтизиопульмонологии Министерства здравоохранения Российской Федерации

Автор, ответственный за переписку.
Email: marinadyakova@yandex.ru

д.б.н., старший научный сотрудник отдела фундаментальной медицины

Россия, Санкт-Петербург

Н. Б. Серебряная

ФГБНУ Институт экспериментальной медицины; ФГБОУ ВО Северо-Западный государственный медицинский университет имени И.И. Мечникова Министерства здравоохранения Российской Федерации

Email: marinadyakova@yandex.ru

д.м.н., профессор, зав. лабораторией общей иммунологии отдела общей патологии и патофизиологии, профессор кафедры клинической микологии, аллергологии и иммунологии

Россия, Санкт-Петербург; Санкт-Петербург

Д. С. Эсмедляева

ФГБУ Санкт-Петербургский научно-исследовательский институт фтизиопульмонологии Министерства здравоохранения Российской Федерации

Email: marinadyakova@yandex.ru

к.б.н., старший научный сотрудник отдела фундаментальной медицины

Россия, Санкт-Петербург

П. К. Яблонский

ФГБУ Санкт-Петербургский научно-исследовательский институт фтизиопульмонологии Министерства здравоохранения Российской Федерации; ФГБОУ ВО Санкт-Петербургский государственный университет

Email: marinadyakova@yandex.ru

д.м.н., профессор, директор, проректор по медицинской деятельности

Россия, Санкт-Петербург; Санкт-Петербург

Список литературы

  1. Багишева Н.В., Мордык А.В., Гольтяпин В.В. Прогнозирование результатов лечения туберкулеза у пациентов с хронической обструктивной болезнью легких // Медицинский Альянс. 2019. Т. 7, № 1. С. 13–19. [Bagisheva N., Mordyk A., Goltyapin V. Prediction of the results of tuberculosis treatment in patients with chronic obstructive lung disease. Meditsinskii Al’yans = Medical Alliance, 2019, vol. 7, no. 1, pp. 13–19. (In Russ.)]
  2. Багишева Н.В., Мордык А.В., Гольтяпин В.В., Моисеева М.В., Батищева Т.Л., Ситникова С.В., Ширинская Н.В. Варианты прогноза эффективности терапии туберкулеза: в фокусе пациенты с хронической обструктивной болезнью легких // Медицинский Альянс. 2023. Т. 11, № 1. С. 19–25. [Bagisheva N., Mordyk A., Goltyapin V., Moiseeva M., Batishcheva T., Sitnikova S., Shirinskaya N. Options in predicting the effectiveness of tuberculosis therapy: focus on patients with chronic obstructive pulmonary disease. Meditsinskii Al’yans = Medical Alliance, 2023, vol. 11, no. 1, pp. 19–25. (In Russ.)] doi: 10.36422/23076348-2023-11-1-19-25
  3. Иванова Е.А., Золотов Н.Н., Позднев В.Ф., Воронина Т.А. Активность дипептидилпептидазы IV при экссудативном воспалении у грызунов // Патогенез. 2018. Т. 16, № 1. С. 51–57. [Ivanova E., Zolotov N., Pozdnev V., Voronina, T. Alteration of dipeptidyl peptidase IV activity in rodents with exudative in flammation. Patogenez = Pathogenesis, 2018, vol. 16, no. 1, pp. 51–57. (In Russ.)] doi: 10.25557/2310-0435.2018.01.51-57
  4. Кетлинский С.А. Генетический анализ чувствительности организма к туберкулезной инфекции // Вестник Российской академии медицинских наук. 2001. № 1. С. 11–24. [Ketlinsky S.A. Genetic analysis of the body’s sensitivity to tuberculosis infection. Vestnik Rossiiskoi akademii meditsinskikh nauk = Annals of the Russian Academy of Medical Sciences, 2001, no. 1, pp. 11–24. (In Russ.)]
  5. Кноринг Б.Е., Давыдова Н.И., Басек Т.Ф., Ница Н.А., Елькин А.В. Показатели иммунитета у больных прогрессирующим фиброзно-кавернозным туберкулезом в зависимости от выраженности деструктивных изменений в легких // Медицинская иммунология. 2012. Т. 14, № 4–5. С. 329–336. [Knoring B.E., Davydova N.A., Basek T.S., Nica N.A., Elkin A.V. Immune indexes in patients with progressive fibrous-cavernous tuberculosis dependent on severity of destructive changes in the lungs. Meditsinskaya immunologiya = Medical Immunology (Russia), 2012, vol. 14, no. 4–5, pp. 329–336. (In Russ.)] doi: 10.15789/1563-0625-2012-4-5-329-336
  6. Andersson J., Samarina A., Fink J., Rahman S., Grundstrӧm S. Impaired expression of perforin and granulysin in CD8_ T cells at the site of infection in human chronic pulmonary tuberculosis. Infect. Immun., 2007, vol. 75, no. 11, pp. 5210–5222. doi: 10.1128/IAI.00624-07
  7. Antonioli L., Csóka B., Fornai M., Colucci R., Kókai E., Blandizzi C., Haskó G. Adenosine and inflammation: what’s new on the horizon? Drug Discov. Today, 2014, vol. 19, no. 8, pp. 1051–1068. doi: 10.1016/j.drudis.2014.02.010
  8. Busso N., Wagtmann N., Herling C., Chobaz-Péclat V., Bischof-Delaloye A., So A., Grouzmann E. Circulating CD26 is negatively associated with inflammation in human and experimental arthritis. Am. J. Pathol., 2005, vol. 166, no. 2, pp. 433–442. doi: 10.1016/S0002-9440(10)62266-3
  9. Ciferská H., Horák P., Heřmanová Z., Ordeltová M., Zadražil J., Tichý T., Ščudla V. The levels of sCD30 and of sCD40L in a group of patients with systemic lupus erythematodes and their diagnostic value. Clin. Rheumatol., 2007, vol. 26, no. 5, pp. 723–728. doi: 10.1007/s10067-006-0389-9
  10. Cortés A., Gracia E., Moreno E., Mallol J., Lluís C., Canela E.I., Casadó V. Moonlighting adenosine deaminase: a target protein for drug development. Med. Res. Rev., 2015, vol. 35, no. 1, pp. 85–125. doi: 10.1002/med.21324
  11. Dhanwani R., Takahashi M., Mathews I.T., Lenzi C., Romanov A., Jeramie D. Watrous J.D., Pieters B., Hedrick C.C., Benedict C.A., Linden J., Nilsson R., Jain M., Sharma S. Cellular sensing of extracellular purine nucleosides triggers an innate IFN-β response. Sci. Adv., 2020, vol. 6, no. 30: eaba3688. doi: 10.1126/sciadv.aba3688
  12. Eltzschig H.K., Thompson L.F., Karhausen J., Cotta R.J., Ibla J.C., Robson S.C., Colgan S.P. Endogenous adenosine produced during hypoxia attenuates neutrophil accumulation: coordination by extracellular nucleotide metabolism. Blood, 2004, vol. 104, no. 13, pp. 3986–3992. doi: 10.1182/blood-2004-06-2066
  13. Gao R., Sun W., Chen Y., Su Y., Wang C., Dong L. Elevated serum levels of soluble CD30 in ankylosing spondylitis patients and its association with disease severity-related parameters. Biomed Res. Int., 2015, vol. 2015, pp. 617282–617288. doi: 10.1155/2015/617282
  14. Ginés S., Mariño M., Mallol J., Canela E.I., Morimoto C., Callebaut C., Hovanessian A., Lluis C., Franco R. Regulation of epithelial and lymphocyte cell adhesion by adenosine deaminase-CD26 interaction. Biochem J., 2002, vol. 361, pp. 203–209. doi: 10.1042/0264-6021:3610203.
  15. Gorrell M.D., Gysbers V., McCaughan G.W. CD26: a multifunctional integral membrane and secreted protein of activated lymphocytes. Scand. J. Immunol., 2001, vol. 54, pp. 249–264.
  16. Hashikawa T., Takedachi M., Terakura M., Yamada S., Thompson L.F., Shimabukuro Y., Murakami S. Activation of adenosine receptor on gingival fibroblasts. J. Dent Res., 2006, vol. 85, no. 8, pp. 739–744. doi: 10.1177/154405910608500810
  17. Hasko G., Cronstein B.N. Adenosine: an endogenous regulator of innate immunity. Trends Immunol., 2004, vol. 25, no. 1, pp. 33–39. doi: 10.1016/j.it.2003.11.003
  18. Henderson J.M., Xiang M.S.W., Huang J.C., Wetzel S., Jiang L., Lai J.H., Wu W., Kench J.G., Bachovchin W.W., Roediger B., McCaughan G.W., Zhang H.E., Gorrell M.D. Dipeptidyl peptidase inhibition enhances CD8 T cell recruitment and activates intrahepatic inflammasome in a murine model of hepatocellular carcinoma. Cancers, 2021, vol. 13: 5495. doi: 10.3390/cancers13215495
  19. Hildebrandt M., Rose M., Ruter J., Salama A., Monnikes H., Klapp B.F. Dipeptidyl peptidase IV (DP IV, CD26) in patients with inflammatory bowel disease. Scand. J. Gastroenterol., 2001, vol. 36, no. 10, pp. 1067–1072. doi: 10.1080/003655201750422675
  20. Kaljas Y., Liu C., Skaldin M., Wu C., Zhou Q., Lu Y., Aksentijevich I., Zavialov A. Human adenosine deaminases ADA1 and ADA2 bind to different subsets of immune cells. Cell. Mol. Life Sci., 2017, vol. 74, no. 3, pp. 555–570. doi: 10.1007/s00018-016-2357-0
  21. Kobayashi H., Hosono O., Mimori T., Kawasaki H., Dang N.H., Tanaka H., Morimoto C. Reduction of serum soluble CD26/dipeptidyl peptidase IV enzyme activity and its correlation with disease activity in systemic lupus erythematosus. J. Rheumatol., 2002, vol. 29, no. 9, pp. 1858–1866.
  22. Lee D.S., Lee E.S., Alam M.M., Jang J.H., Lee H.S., Oh H., Kim Y.-C., Manzoor Z., Koh Y.-S., Kang D.-G., Lee D.H. Soluble DPP-4 up-regulates toll-like receptors and augments inflammatory reactions, which are ameliorated by vildagliptin or mannose-6-phosphate. Metabolism, 2016, vol. 65, no. 2, pp. 89–101. doi: 10.1016/j.metabol.2015.10.002
  23. Liang D., Shao H., Born W.K., O’Brien R.L., Kaplan H.J., Sun D. High level expression of A2ARs is required for the enhancing function, but not for the inhibiting function, of γδ T cells in the autoimmune responses of EAU. PLoS One, 2018, vol. 13, no. 6: e0199601. doi: 10.1371/journal. pone.0199601
  24. Lyadova I.V., Panteleev A.V. Th1 and Th17 cells in tuberculosis: protection, pathology, and biomarkers. Mediators Inflamm., 2015, vol. 2015, no. 10: 854507. doi: 10.1155/2015/854507
  25. Martinez-Navio J.M., Casanova V., Pacheco R., Naval-Macabuhay I., Climent N., Garcia F., Gatell J.M., Mallol J., Gallart T., Lluis C., Franco R.J. Adenosine deaminase potentiates the generation of effector, memory, and regulatory CD4+ T cells. J. Leukoc. Biol., 2011, vol. 89, no. 1, pp. 127–136. doi: 10.1189/jlb.1009696
  26. Ohta A., Sitkovsky M. Extracellular adenosine-mediated modulation of regulatoty T cells. Front. Immunol., 2014, vol. 5, pp. 304–313. doi: 10.3389/fimmu.2014.00304
  27. Pan K., Ohnuma K., Morimoto C., Dang N.H. CD26/dipeptidyl peptidase IV and its multiple biological functions. Cureus, 2021, vol. 13, no. 2: e13495. doi: 10.7759/cureus.13495
  28. Pasquini S., Contri C., Borea P.A., Vincenzi F., Varani K. Adenosine and inflammation: here, there and everywhere. Int. J. Mol. Sci., 2021, vol. 22: 7685. doi: 10.3390/ijms22147685
  29. Schonermarck U., Csernok E., Trabandt A., Hansen H., Gross W.L. Circulating cytokines and soluble CD23, CD26 and CD30 in ANCA-associated vasculitides. Clin. Exp. Rheumatol., 2000, vol. 18, no. 4, pp. 457–463.
  30. Thompson L.F., Eltzschig H.K., Ibla J.C., Van De Wiele C.J., Resta R., Morote-Garcia J.C., Colgan S.P. Crucial role for ecto-5′-nucleotidase (CD73) in vascular leakage during hypoxia. J. Exp. Med., 2004, vol. 200, no. 11, pp. 1395–1405. doi: 10.1084/jem.20040915
  31. Tiwari-Heckler S., Yee E.U., Yalcin Y., Yalcin Y., Park J., Nguyen D.-H.T., Gao W., Csizmadia E., Afdhal N., Mukamal K.J., Robson S.C., Lai M., Schwartz R.E., Jiang Z.C. Adenosine deaminase 2 produced by infiltrative monocytes promotes liver fibrosis in nonalcoholic fatty liver disease. Cell. Rep., 2021, vol. 37, no. 4: 109897. doi: 10.1016/j.celrep.2021.109897
  32. Ulusoy H., Kamanli A., Ilhan N., Kuru O., Arslan S., Alkan G., Ozgocmen S.. Serum levels of soluble CD26 and CD30 and their clinical significance in patients with rheumatoid arthritis. Rheumatol. Int., 2012, vol. 32, no. 12, pp. 3857–3862. doi: 10.1007/s00296-011-2302-3
  33. Wronkowitz N., Görgens S.W., Romacho T., Villalobos L.A., Sánchez-Ferrer C.F., Peiró C., Sell H., Eckel J. Soluble DPP4 induces inflammation and proliferation of human smooth muscle cells via protease-activated receptor 2. Biochim. Biophys. Acta, 2014, vol. 1842, no. 9, pp. 1613–1621. doi: 10.1016/j.bbadis.2014.06.004
  34. Zavialov A.V., Gracia E., Glaichenhaus N., Franco R., Zavialov A.V., Lauvau G. Human adenosine deaminase 2 induces differentiation of monocytes into macrophages and stimulates proliferation of T helper cells and macrophages. J. Leuk. Biol., 2010, vol. 88, no. 2, pp. 279–290. doi: 10.1189/jlb.1109764
  35. Zhan M., Xue H., Wang Y., Wu Z., Wen Q., Shi X., Wang J. A clinical indicator-based prognostic model predicting treatment outcomes of pulmonary tuberculosis: a prospective cohort study. BMC Infect. Dis., 2023, vol. 23, no. 1: 101. doi: 10.1186/s12879-023-08053-x

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Дьякова М.Е., Серебряная Н.Б., Эсмедляева Д.С., Яблонский П.К., 2024

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».