Нейросетевой анализ в прогнозировании воспаления у пациентов, находящихся на гемодиализе
- Авторы: Хади Х.Х.1, Аль-Маяли Х.Х.2, Абдалсада Х.Х.3, Мустафа Ш.Р.4, Альмулла А.Ф.5, Аль-Хакейм Х.К.1
-
Учреждения:
- Университет Куфы
- Технический университет Аль-Фурат Аль-Аусат
- Университет Аль-Мутанна
- Медицинский университет Хоулера
- Исламский университет
- Выпуск: Том 13, № 5 (2023)
- Страницы: 957-966
- Раздел: ОРИГИНАЛЬНЫЕ СТАТЬИ
- URL: https://bakhtiniada.ru/2220-7619/article/view/158898
- DOI: https://doi.org/10.15789/2220-7619-POI-15622
- ID: 158898
Цитировать
Полный текст
Аннотация
Многие пациенты, находящиеся на гемодиализе (ГД), страдают от тяжелого, опасного для жизни воспаления, которое необходимо лечить для предотвращения дальнейших осложнений. Крайне необходимо проведение ранней диагностика воспаления при ГД. Для разделения пациентов с воспалением и без него в настоящем исследовании использовалась показатели матриксной металлопротеиназы-1 (MMP3) и тканевого ингибитора металлопротеиназ-1 (TIMP1) с использованием анализа нейронных сетей (НС).
Методы. Положительные результаты оценки уровня С-реактивного белка использовали в качестве критерия наличия воспаления у пациентов (ГД+СРБ) по сравнению с отрицательной группой (ГД-СРБ). Анализ НС использовался для разделения групп на основании применяемых биомаркеров.
Результаты. Пациенты с HD+CRP имеют более высокую продолжительность заболевания, MMP3 и более низкий уровень кальция, по сравнению с группой HD-CRP, уровень витамина D значительно ниже в группе HD+CRP по сравнению с обеими другими группами (все p<0,05). TIMP1 достоверно коррелирует с уровнем неорганического фосфата и СРБ. В НС#1 модель прогнозирования HD+CRP на основе HD-CRP имеет площадь под кривой (AUC) рабочей характеристики приемника (ROC) 0,907 с чувствительностью и специфичностью 89,2% и специфичностью 100,0% соответственно. Главной прогностической переменной для прогнозирования HD+CRP является уровень MMP3 (100%), а также и уровень креатинина (87,1%). MMP3 связана с патофизиологией ГБ, по крайней мере, через их корреляцию с воспалением при ГБ. В НС#2 AUC ROC для прогнозирования заболевания почек и последующей ГБ составила 98,9% при чувствительности 100,0% и специфичности 97,1%. Четырьмя ведущими прогностическими параметрами для прогнозирования высокого риска воспаления у пациентов с ГБ являются уровень мочевины (100%), креатинина (100%), MMP3 (59,7%) и витамина D (57,1%).
Заключение. Анализ НС может разграничивать пациентов с ГБ с воспалением и без него. Кроме того, измеряемые параметры, особенно MMP3, TIMP1 и витамин D, полезны в качестве диагностических инструментов заболеваний почек и сопутствующего воспаления.
Полный текст
Открыть статью на сайте журналаОб авторах
Хади Хасан Хади
Университет Куфы
Автор, ответственный за переписку.
Email: hhadi0615@gmail.com
научный сотрудник кафедры химии факультета естественных наук Научного колледжа
Ирак, НаджафХавра Хусейн Аль-Маяли
Технический университет Аль-Фурат Аль-Аусат
Email: hawaraalmyaly1@gmail.com
преподаватель
Ирак, НаджафХабиба Хдаир Абдалсада
Университет Аль-Мутанна
Email: habiba.khdair@mu.edu.iq
доцент фармацевтического колледжа
Ирак, Аль-МутаннаШата Руф Мустафа
Медицинский университет Хоулера
Email: shatha003@yahoo.com
профессор кафедры клинического анализа Фармацевтического колледжа
Ирак, ХаваланАббас Ф. Альмулла
Исламский университет
Email: abbass.chem.almulla1991@gmail.com
доцент кафедры медицинских лабораторных технологий Колледжа медицинских технологий
Ирак, НаджафХусейн К. Аль-Хакейм
Университет Куфы
Email: headm2010@yahoo.com
ORCID iD: 0000-0001-6143-5196
профессор кафедры химии факультета естественных наук Научного колледжа
Ирак, НаджафСписок литературы
- Abdalsada H.K., Hadi H.H., Almulla A.F., Najm A.H., Al-Isa A., Al-Hakeim H.K. Correlation of Stromelysin-1 and tissue inhibitor of Metalloproteinase-1 with lipid profile and atherogenic indices in end-stage renal disease patients: a neural network study. Pertanika J. Sci. & Technol., 2023, vol. 31, no. 4, pp. 2067–2087. doi: 10.47836/pjst.31.4.27
- Agarwal R. Defining end-stage renal disease in clinical trials: a framework for adjudication. Nephrol Dial Transplant., 2016, vol. 31, iss. 6, pp. 864–867. doi: 10.1093/ndt/gfv289
- Amanzadeh M., Mota A., Zarghami N., Abedi-Azar S., Abroon S., Akbarian N., Mihanfar A., Rahmati-Yamchi M. Association between matrix Metalloproteinase-3 activity and glomerular filtration rate and albuminuria status in patients with type 2 diabetes mellitus. Iran J. Kidney Dis., 2018, vol. 12, no. 1, pp. 40–47.
- Avram M.M., Mittman N., Myint M.M., Fein P. Importance of low serum intact parathyroid hormone as a predictor of mortality in hemodialysis and peritoneal dialysis patients: 14 years of prospective observation. Am. J. Kidney Dis., 2001, vol. 38, iss. 6, pp. 1351–1357. doi: 10.1053/ajkd.2001.29254
- Benjamini Y., Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. Series B Stat. Methodol., 1995, vol. 57, iss. 1, pp. 289–300. doi: 10.1111/j.2517-6161.1995.tb02031.x
- Block G.A., Klassen P.S., Lazarus J.M., Ofsthun N., Lowrie E.G., Chertow G.M. Mineral metabolism, mortality, and morbidity in maintenance hemodialysis. J. Am. Soc. Nephrol., 2004, vol. 15, iss. 8, pp. 2208–2218. doi: 10.1097/01.ASN.0000133041.27682.A2
- Bohle A., Wehrmann M., Bogenschütz O., Batz C., Müller C.A., Müller G.A. The pathogenesis of chronic renal failure in diabetic nephropathy. Investigation of 488 cases of diabetic glomerulosclerosis. Pathol. Res. Pract., 1991, vol. 187, iss. 2–3, pp. 251–259. doi: 10.1016/s0344-0338(11)80780-6
- Cantaluppi V., Quercia A.D., Dellepiane S., Ferrario S., Camussi G., Biancone L. Interaction between systemic inflammation and renal tubular epithelial cells. Nephrol. Dial. Transplant., 2014, vol. 29, no. 11, pp. 2004–2011. doi: 10.1093/ndt/gfu046
- Carome M.A., Striker L.J., Peten E.P., Moore J., Yang C.W., Stetler-Stevenson W.G., Striker G.E. Human glomeruli express TIMP-1 mRNA and TIMP-2 protein and mRNA. Am. J. Physiol., 1993, vol. 264, no. 6, pt 2: F923-F929. doi: 10.1152/ajprenal.1993.264.6.F923
- Chen D.Q., Cao G., Chen H., Liu D., Su W., Yu X-Y., Vaziri N.D., Liu X-H., Bai X., Zhang L., Zhao Y-Y. Gene and protein expressions and metabolomics exhibit activated redox signaling and wnt/β-catenin pathway are associated with metabolite dysfunction in patients with chronic kidney disease. Redox. Biol., 2017, vol. 12, pp. 505–521. doi: https://doi.org/10.1016/j.redox.2017.03.017
- Clemmer J.S., Shafi T., Obi Y. Physiological mechanisms of hypertension and cardiovascular disease in end-stage kidney disease. Curr. Hypertens. Rep., 2022, vol. 24, no. 10, pp. 413–424. doi: 10.1007/s11906-022-01203-7
- Crespo-Salgado J., Vehaskari V.M., Stewart T., Ferris M., Zhang Q., Wang G., Blanchard E.E., Taylor C.M., Kallash M., Greenbaum L.A., Aviles D.H. Intestinal microbiota in pediatric patients with end stage renal disease: a Midwest Pediatric Nephrology Consortium study. Microbiome, 2016, vol. 4, no. 1: 50. doi: 10.1186/s40168-016-0195-9
- DeSoi C.A., Umans J.G. Phosphate kinetics during high-flux hemodialysis. J. Am. Soc. Nephrol., 1993, vol. 4, no. 5, pp. 1214–1218. doi: 10.1681/ASN.V451214
- Eguchi T, Kubota S., Kawata K., Mukudai Y., Uehara J., Ohgawara T., Ibaragi S., Sasaki A., Kuboki T., Takigawa M. Novel transcription-factor-like function of human matrix metalloproteinase 3 regulating the CTGF/CCN2 gene. Mol. Cell. Biol., 2008, vol. 28, no. 7, pp. 2391–2413. doi: 10.1128/MCB.01288-07
- Gluba-Brzózka A., Michalska-Kasiczak M., Franczyk-Skóra B., Nocuń M., Banach M., Rysz J. Markers of increased cardiovascular risk in patients with chronic kidney disease. Lipids Health Dis., 2014, vol. 13: 135. doi: 10.1186/1476-511X-13-135.
- Guizani I., Zidi W., Zayani Y., Boudiche S., Hadj-Taieb S., Sanhaji H., Zaroui A., Mechmeche R., Mourali M.S., Feki M., Allal-Elasmi M. Matrix metalloproteinase-3 predicts clinical cardiovascular outcomes in patients with coronary artery disease: a 5 years cohort study. Mol. Biol. Rep., 2019, vol. 46, no. 5, pp. 4699–4707. doi: 10.1007/s11033-019-04914-4
- Hadi T., Boytard L., Silvestro M., Alebrahim .D, Jacob S., Feinstein J., Barone K., Spiro W., Hutchison S., Simon R., Rateri D., Pinet F., Fenyo D., Adelman M., Moore K.J., Eltzschig H.K., Daugherty A., Ramkhelawon B. Macrophage-derived netrin-1 promotes abdominal aortic aneurysm formation by activating MMP3 in vascular smooth muscle cells. Nat. Commun., 2018, vol. 9, no. 1:5022. doi: 10.1038/s41467-018-07495-1
- Hendriks F.K., Kooman J.P., van Loon L.J.C. Dietary protein interventions to improve nutritional status in end-stage renal disease patients undergoing hemodialysis. Curr. Opin. Clin. Nutr. Metab. Care, 2021, vol. 24, no. 1, pp. 79–87. doi: 10.1097/MCO.0000000000000703
- Housley T.J., Baumann A.P, Braun I.D., Davis G., Seperack P.K., Wilhelm S.M. Recombinant Chinese hamster ovary cell matrix metalloprotease-3 (MMP-3, stromelysin-1). Role of calcium in promatrix metalloprotease-3 (pro-MMP-3, prostromelysin-1) activation and thermostability of the low mass catalytic domain of MMP-3. J. Biol. Chem., 1993, vol. 268, no. 6, pp. 4481–4487. doi: 10.1016/S0021-9258(18)53634-6
- Ishizaki M., Matsunaga T., Adachi K., Miyashita E. Serum matrix metalloproteinase-3 in hemodialysis patients with dialysis-related amyloidosis. Hemodial. Int., 2004, vol. 8, no. 3, pp. 219–225. doi: 10.1111/j.1492-7535.2004.01099.x
- Kanda H., Hirasaki Y., Iida T., Kanao-Kanda M., Toyama Y., Chiba T., Kunisawa T. Perioperative management of patients with end-stage renal disease. J. Cardiothorac. Vasc. Anesth., 2017, vol. 31, no. 6, pp. 2251–2267. doi: 10.1053/j.jvca.2017.04.019
- Khokha R., Murthy A., Weiss A. Metalloproteinases and their natural inhibitors in inflammation and immunity. Nat. Rev. Immunol., 2013, vol. 13, no. 9, pp. 649–665. doi: 10.1038/nri3499
- Kobusiak-Prokopowicz M., Kaaz K., Marciniak D., Karolko B., Mysiak A. Relationships between circulating matrix metalloproteinases, tissue inhibitor TIMP-2, and renal function in patients with myocarditis. Kidney Blood. Press. Res., 2021, vol. 46, no. 6, pp. 749–757. doi: 10.1159/000519594
- Kostov K., Blazhev A. Changes in serum levels of matrix metalloproteinase-1 and tissue inhibitor of metalloproteinases-1 in patients with essential hypertension. Bioengineering (Basel). 2022, vol. 9, no. 3: 119. doi: 10.3390/bioengineering9030119
- Lerner A., Neidhöfer S., Reuter S., Matthias T. MMP3 is a reliable marker for disease activity, radiological monitoring, disease outcome predictability, and therapeutic response in rheumatoid arthritis. Best Pract. Res. Clin. Rheumatol., 2018, vol. 32, no. 4, pp. 550–562. doi: 10.1016/j.berh.2019.01.006
- Levey A.S., Coresh J., Greene T., Marsh J., Stevens L.A, Kusek J.W., Van Lente F.; Chronic Kidney Disease Epidemiology Collaboration. Expressing the modification of diet in renal disease study equation for estimating glomerular filtration rate with standardized serum creatinine values. Clin. Chem., 2007, vol. 53, no. 4, pp. 766–772. doi: 10.1373/clinchem.2006.077180
- Lim A.I., Chan L.Y., Lai K.N., Tang S.C., Chow C.W., Lam M.F., Leung J.C. Distinct role of matrix metalloproteinase-3 in kidney injury molecule-1 shedding by kidney proximal tubular epithelial cells. Int J. Biochem. Cell. Biol., 2012, vol. 44, no. 6, pp. 1040–1050. doi: 10.1016/j.biocel.2012.03.015
- Luczyszyn S.M., de Souza C.M., Braosi A.P., Dirschnabel A.J., Claudino M., Repeke C.E., Faucz F.R., Garlet G.P., Pecoits-Filho R., Trevilatto P.C. Analysis of the association of an MMP1 promoter polymorphism and transcript levels with chronic periodontitis and end-stage renal disease in a Brazilian population. Arch. Oral. Biol., 2012, vol. 57, no. 7, pp. 954–963. doi: 10.1016/j.archoralbio.2012.01.013
- Lynch C.C., Matrisian L.M. Matrix metalloproteinases in tumor-host cell communication. Differentiation, 2002, vol. 70, no. 9–10, pp. 561–573. doi: 10.1046/j.1432-0436.2002.700909.x
- Matulka M., Konopka A., Mroczko B., Pryczynicz A., Kemona A., Groblewska M., Sieskiewicz A., Olszewska E. Expression and concentration of matrix metalloproteinase 9 and tissue inhibitor of matrix metalloproteinases 1 in laryngeal squamous cell carcinoma. Dis. Markers., 2019, vol. 2019: 3136792. doi: 10.1155/2019/3136792
- Melamed M.L., Eustace J.A, Plantinga L., Jaar B.G., Fink N.E., Coresh J., Klag M.J., Powe N.R. Changes in serum calcium, phosphate, and PTH and the risk of death in incident dialysis patients: a longitudinal study. Kidney Int., 2006, vol. 70, no. 2, pp. 351–357. doi: 10.1038/sj.ki.5001542
- Miljković M., Stefanović A., Bogavac-Stanojević N., Simić-Ogrizović S., Dumić J., Černe D., Jelić-Ivanović Z., Kotur-Stevuljević J. Association of Pentraxin-3, Galectin-3 and Matrix Metalloproteinase-9/Timp-1 with cardiovascular risk in renal disease patients. Acta Clin. Croat., 2017, vol. 56, no. 4, pp. 673–680. doi: 10.20471/acc.2017.56.04.14
- Modi Z.J., Lu Y., Ji N., Kapke A., Selewski D.T., Dietrich X., Abbott K., Nallamothu B.K., Schaubel D.E., Saran R., Gipson D.S. Risk of cardiovascular disease and mortality in young adults with end-stage renal disease: an analysis of the us renal data system. JAMA Cardiol., 2019, vol. 4, no. 4, pp. 353–362. doi: 10.1001/jamacardio.2019.0375
- Mora-Gutiérrez J.M., Fernández-Seara M.A., Slon Roblero M.F., Gonzalez O., Escalada F.J., Soler M.J, Páramo J.A., Garcia-Fernandez N. SP453 matrix metalloproteinase-10 and tissue inhibitor of metalloproteinase-1 (TIMP-1) as early predictors of nephropathy in patients with type 2 diabetes mellitus. Nephrol. Dial. Transplant., 2018, vol. 33, iss. suppl_1: i500-i. doi: 10.1093/ndt/gfy104.SP453
- Mora-Gutiérrez J.M., Rodríguez J.A., Fernández-Seara M.A., Orbe J., Escalada F.J., Soler M.J., Slon Roblero M.F., Riera M., Páramo J.A., Garcia-Fernandez N. MMP-10 is increased in early stage diabetic kidney disease and can be reduced by renin-angiotensin system blockade. Sci. Rep., 2020 vol. 10, no. 1: 26. doi: 10.1038/s41598-019-56856-3
- Nguyen-Khoa T., Massy Z.A., De Bandt J.P., Kebede M., Salama L., Lambrey G., Witko-Sarsat V., Drüeke T.B., Lacour B., Thévenin M. Oxidative stress and haemodialysis: role of inflammation and duration of dialysis treatment. Nephrol. Dial. Transplant., 2001, vol. 16, no. 2, pp. 335–340. doi: 10.1093/ndt/16.2.335
- Preston G.A., Barrett C.V., Alcorta D.A., Hogan S.L., Dinwiddie L., Jennette J.C., Falk R.J. Serum matrix metalloproteinases MMP-2 and MMP-3 levels in dialysis patients vary independently of CRP and IL-6 levels. Nephron, 2002, vol. 92, no. 4, pp. 817–823. doi: 10.1159/000065464
- Punsawad C., Viriyavejakul P. Increased expression of kidney injury molecule-1 and matrix metalloproteinase-3 in severe Plasmodium falciparum malaria with acute kidney injury. Int. J. Clin. Exp. Pathol., 2017, vol. 10, no. 7, pp. 7856–7864.
- Rashpa R.S., Mahajan V.K., Kumar P., Mehta K.S., Chauhan P.S., Rawat R., Sharma V. Mucocutaneous manifestations in patients with chronic kidney disease: a cross-sectional study. Indian Dermatol. Online J., 2018, vol. 9, no. 1, pp. 20–26. doi: 10.4103/idoj.IDOJ_160_17
- Ralay Ranaivo H., Hodge J.N., Choi N., Wainwright M.S. Albumin induces upregulation of matrix metalloproteinase-9 in astrocytes via MAPK and reactive oxygen species-dependent pathways. J. Neuroinflammation, 2012, vol. 9: 68. doi: 10.1186/1742-2094-9-68
- Rymarz A., Mosakowska M., Niemczyk S. The significance of metalloproteinase 3 (MMP-3), chemokine CXC ligand 13 (CXCL-13) and complement component C5a in different stages of ANCA associated vasculitis. Sci. Rep., 2021, vol. 11, no. 1: 5132. doi: 10.1038/s41598-021-84662-3
- Rysz J., Banach M., Stolarek R.A., Pasnik J., Cialkowska-Rysz A., Koktysz R., Piechota M., Baj Z. Serum matrix metalloproteinases MMP-2 and MMP-9 and metalloproteinase tissue inhibitors TIMP-1 and TIMP-2 in diabetic nephropathy. J. Nephrol., 2007, vol. 20, no. 4, pp. 444–452.
- Sabbagh Y. Phosphate as a sensor and signaling molecule. Clin. Nephrol. 2013, vol. 79, no. 1, pp. 57–65. doi: 10.5414/CN107322
- Sakaguchi Y., Hamano T., Isaka Y. Magnesium in hemodialysis patients: a new understanding of the old problem. Contrib. Nephrol., 2018, vol. 196, pp. 58–63. doi: 10.1159/000485700
- Saran R., Robinson B., Abbott K.C., Agodoa L.Y., Albertus P., Ayanian J., Balkrishnan R., Bragg-Gresham J., Cao J., Chen J.L., Cope E., Dharmarajan S., Dietrich X., Eckard A., Eggers P.W., Gaber C., Gillen D., Gipson D., Gu H., Hailpern S.M., Hall Y.N., Han Y., He K., Hebert H., Helmuth M., Herman W., Heung M., Hutton D., Jacobsen S.J., Ji N., Jin Y., Kalantar-Zadeh K., Kapke A., Katz R., Kovesdy C.P., Kurtz V., Lavalee D., Li Y., Lu Y., McCullough K., Molnar M.Z, Montez-Rath M., Morgenstern H., Mu Q., Mukhopadhyay P., Nallamothu B., Nguyen D.V., Norris K.C., O’Hare A.M., Obi Y., Pearson J., Pisoni R., Plattner B., Port F.K., Potukuchi P., Rao P., Ratkowiak K., Ravel V., Ray D., Rhee C.M., Schaubel D.E., Selewski D.T., Shaw S., Shi J., Shieu M., Sim J.J., Song P., Soohoo M., Steffick D., Streja E., Tamura M.K., Tentori F., Tilea A., Tong L., Turf M., Wang D., Wang M., Woodside K., Wyncott A., Xin X., Zang W., Zepel L., Zhang S., Zho H., Hirth R.A., Shahinian V. US renal data system 2016 annual data report: epidemiology of kidney disease in the United States. Am. J. Kidney Dis., 2017, vol. 69, no. 3, suppl. 1, pp. A7–A8. doi: 10.1053/j.ajkd.2016.12.004
- Sarnak M.J. Cardiovascular complications in chronic kidney disease. Am. J. Kidney Dis., 2003, vol. 41, suppl. 5, pp. 11–17. doi: 10.1016/s0272-6386(03)00372-x
- Shi S., Su M., Shen G., Hu Y., Yi F., Zeng Z., Zhu P., Yang G., Zhou H., Li Q., Xie X. Matrix metalloproteinase 3 as a valuable marker for patients with COVID-19. J. Med. Virol., 2021, vol. 93, no. 1, pp. 528–532. doi: 10.1002/jmv.26235
- Siloşi I., Boldeanu M.V., Mogoantă S.Ş., Ghiluşi M., Cojocaru M., Biciuşcă V., Cojocaru I.M., Avrămescu C.S., Gheonea D.I., Siloşi C.A., Turculeanu A. Matrix metalloproteinases (MMP-3 and MMP-9) implication in the pathogenesis of inflammatory bowel disease (IBD). Rom. J. Morphol. Embryol., 2014, vol. 55, no. 4, pp. 1317–1324.
- Tuncer T., Kaya A., Gulkesen A., Kal G.A., Kaman D., Akgol G. Matrix metalloproteinase-3 levels in relation to disease activity and radiological progression in rheumatoid arthritis. Adv. Clin. Exp. Med., 2019, vol. 28, no. 5, pp. 665–670. doi: 10.17219/acem/94065
- Vaidya H., Giri S., Jain M., Goyal R. Decrease in serum matrix metalloproteinase-9 and matrix metalloproteinase-3 levels in Zucker fa/fa obese rats after treatment with swertiamarin. Exp. Clin. Cardiol., 2012, vol. 17, no. 1, pp. 12–16.
- Wan C.Y., Li L., Liu L.S., Jiang C.M., Zhang H.Z., Wang J.X. Expression of matrix metalloproteinases and tissue inhibitor of matrix metalloproteinases during apical periodontitis development. J. Endod., 2021, vol. 47, no. 7, pp. 1118–1125. doi: 10.1016/j.joen.2021.04.005
- Wanchaitanawong W., Tantiworawit A., Piriyakhuntorn P., Rattanathammethee T., Hantrakool S., Chai-Adisaksopha C., Rattarittamrong E., Norasetthada L., Niprapan P., Fanhchaksai K., Charoenkwan P. The association between pre-transfusion hemoglobin levels and thalassemia complications. Hematology, 2021, vol. 26, no. 1, pp. 1–8. doi: 10.1080/16078454.2020.1856513
- Warner R.B., Najy A.J., Jung Y.S., Fridman R., Kim S., Kim H.C. establishment of structure-function relationship of tissue inhibitor of metalloproteinase-1 for its interaction with CD63: implication for cancer therapy. Sci. Rep., 2020, vol. 10, no. 1: 2099. doi: 10.1038/s41598-020-58964-x
- Warner R.L., Bhagavathula N., Nerusu K.C., Lateef H., Younkin E., Johnson K.J., Varani J. Matrix metalloproteinases in acute inflammation: induction of MMP-3 and MMP-9 in fibroblasts and epithelial cells following exposure to pro-inflammatory mediators in vitro. Exp. Mol. Pathol., 2004, vol. 76, no. 3, pp. 189–195. doi: 10.1016/j.yexmp.2004.01.003
- Wu C.F., Hou J.S., Wang C.H., Lin Y.L., Lai Y.H., Kuo C.H., Liou H.H., Tsai J.P., Hsu B.G. Serum sclerostin but not DKK-1 correlated with central arterial stiffness in end stage renal disease patients. Int. J. Environ. Res. Public Health, 2020, vol. 17, no. 4: 1230. doi: 10.3390/ijerph17041230
- Yang B., Vohra P.K., Janardhanan R., Misra K.D., Misra S. Expression of profibrotic genes in a murine remnant kidney model. J. Vasc. Interv. Radiol., 2011, vol. 22, no. 12, pp. 1765-1772.e1. doi: 10.1016/j.jvir.2011.08.026
- Yatsyshyn R., Salyzhyn T. The role of tissue inhibitor of matrix metalloproteinase-1 in cardiac and blood vessels remodeling and in potential for survival in case of chronic heart failure of various origins. Pharma Innov., 2016, vol. 5, iss. 10, pt. B, pp. 85–91.
- Yazgan B., Avci F., Memi G., Tastekin E. Inflammatory response and matrix metalloproteinases in chronic kidney failure: modulation by adropin and spexin. Exp. Biol. Med. (Maywood)., 2021, vol. 246, no. 17, pp. 1917–1927. doi: 10.1177/15353702211012417
- Zhu Q.Q., Li T.T., Chen R., Pan H.F., Tao J.H., Li X.P., Ye D.Q. Elevated serum levels of MMP-2, MMP-3, and MMP-13 in Chinese patients with systemic lupus erythematosus. Scand. J. Rheumatol., 2010, vol. 39, no. 5, pp. 439–441. doi: 10.3109/03009741003742789
Дополнительные файлы
