Взаимодействие в-клеточных рецепторов и антигенов с различным пространственным расположением

Обложка

Цитировать

Полный текст

Аннотация

В-клеточные рецепторы могут взаимодействовать с эпитопами антигенов на различных объектах: макромолекулах, микроорганизмах или на поверхности других клеток, например, фолликулярных дендритных клеток. Соответственно, В-клетки, с одной стороны, имеют возможность оценивать расположение эпитопов на поверхности патогена, а с другой стороны, они должны адаптировать свой рецепторный аппарат к различным вариантам расположения эпитопов и свойствам несущих антиген поверхностей. Действительно, В-клеточные рецепторы и антитела лучше связывают объекты с регулярным и плотным расположением эпитопов, характерным для многих патогенов. В результате, такое расположение эпитопов может распознаваться как патоген-ассоциированный геометрический паттерн, однако условия этого распознавания зависят от изотипа мембранного иммуноглобулина и степени зрелости В-лимфоцита. Юные В-клетки экспрессируют мембранный IgM, который участвует в развитии В-клеток и селекции их репертуара. Рецепторы с IgM не предъявляют жестких требований к расположению эпитопов и могут активировать В-клетку даже при связывании моновалентного антигена. Рецепторы с мембранным IgD экспрессируются позднее и преобладают на наивных В-клетках перед их вступлением в иммунный ответ. Эти рецепторы оптимизированы для двухточечного связывания антигена и строго нуждаются в таком типе взаимодействия для индукции активационного сигнала. До контакта с антигеном В-клеточные рецепторы сгруппированы в дискретных зонах мембраны — нанокластерах, за счет тесных взаимодействий с актиновым цитоскелетом. Контакт с антигеном ведет к отсоединению рецепторов от цитоскелета, росту их подвижности и объединению нанокластеров в микрокластеры — крупные скопления, обогащенные сигнальными молекулами. Наиболее динамичные изменения наблюдаются при контакте с антигеном, фиксированным на мембране другой клетки. В этом случае свободный актин перемещается на периферию зоны межклеточного контакта, где формирует цитоскелет отростков, несущих скопления рецепторов. Отростки распространяются по поверхности клетки-партнера, а затем сокращаются, перемещая связавшие антиген микрокластеры в центр зоны контакта. Наконец, микрокластеры объединяются в центральный кластер иммунного синапса, интенсивность активационного сигнала падает, и клетка готовится к эндоцитозу сгруппированных на локальном участке антигенов. Таким образом, структура В-клеточных рецепторов может способствовать реакции В-лимфоцита на антигены с характерным пространственным расположением, тогда как динамическое взаимодействие В-клеточного рецепторного аппарата с цитоскелетом позволяет оптимизировать связывание антигенов, представленных на разнообразных носителях. Знание пространственных аспектов распознавания антигенов может быть полезно для конструирования вакцин на основе вирусоподобных частиц или антигенов на других искусственных носителях.

Об авторах

Владимир Юрьевич Талаев

ФБУН Нижегородский научно-исследовательский институт эпидемиологии и микробиологии им. академика И.Н. Блохиной Роспотребнадзора

Email: talaev@inbox.ru
ORCID iD: 0000-0003-1993-0622
SPIN-код: 5958-4703
Scopus Author ID: 8547169700

д.м.н., профессор, зав. лабораторией клеточной иммунологии

Россия, Нижний Новгород

Мария Владимировна Светлова

ФБУН Нижегородский научно-исследовательский институт эпидемиологии и микробиологии им. академика И.Н. Блохиной Роспотребнадзора

Email: marya.talaeva@yandex.ru
ORCID iD: 0000-0003-4097-6780
SPIN-код: 8340-7583
Scopus Author ID: 36471139400

к.б.н., старший научный сотрудник лаборатории клеточной иммунологии

Россия, Нижний Новгород

Ирина Евгеньевна Заиченко

ФБУН Нижегородский научно-исследовательский институт эпидемиологии и микробиологии им. академика И.Н. Блохиной Роспотребнадзора

Автор, ответственный за переписку.
Email: imm.irina@mail.ru
ORCID iD: 0000-0001-5063-3111
SPIN-код: 3522-4289
Scopus Author ID: 8547169800

 к.б.н., ведущий научный сотрудник лаборатории клеточной иммунологии 

Россия, Нижний Новгород

Ольга Николаевна Бабайкина

ФБУН Нижегородский научно-исследовательский институт эпидемиологии и микробиологии им. академика И.Н. Блохиной Роспотребнадзора

Email: olga_babaykina@inbox.ru
ORCID iD: 0000-0003-4527-6134
Scopus Author ID: 8547169900

к.м.н., старший научный сотрудник лаборатории клеточной иммунологии

Россия, Нижний Новгород

Елена Викторовна Воронина

ФБУН Нижегородский научно-исследовательский институт эпидемиологии и микробиологии им. академика И.Н. Блохиной Роспотребнадзора

Email: el2v@mail.ru
ORCID iD: 0000-0003-1801-9693
SPIN-код: 6615-7674
Scopus Author ID: 56841316700

к.б.н., старший научный сотрудник лаборатории клеточной иммунологии 

Россия, Нижний Новгород

Сергей Иванович Чистяков

ГБУЗ НО Нижегородский областной центр крови им. Н.Я. Климовой

Email: nock4328880@mail.ru
SPIN-код: 2214-7677

д.м.н., профессор, главный врач

Россия, Нижний Новгород

Список литературы

  1. Кудрявцев И.В., Головкин А.С., Тотолян А.А. Т-хелперы и их клетки-мишени при COVID-19 // Инфекция и иммунитет. 2022. Т. 12, № 3, C. 409–426. [Kudryavtsev I.V., Golovkin A.S., Totolian A.A. T helper cell subsets and related target cells in acute COVID-19 Infektsiya i immunitet = Russian Journal of Infection and Immunity, 2022, vol. 12, no. 3, pp. 409–426. (In Russ.)] doi: 10.15789/2220-7619-THC-1882
  2. Талаев В.Ю., Заиченко И.Е., Бабайкина О.Н., Светлова М.В., Воронина Е.В. Пути эндоцитоза вирусоподобных частиц и презентация поглощенных антигенов // Инфекция и иммунитет. 2023. Т. 13, № 2. C. 219–233. [Talayev V.Y., Zaichenko I.Y., Babaykina O.N., Svetlova M.V., Voronina E.V. Virus-like particle endocytosis pathways and presentation of captured antigens Infektsiya i immunitet = Russian Journal of Infection and Immunity, 2023, vol. 13, no. 2, pp. 219–233. (In Russ.)] doi: 10.15789/2220-7619-VPE-8045
  3. Allen C.D., Ansel K.M., Low C., Lesley R., Tamamura H., Fujii N., Cyster J.G. Germinal center dark and light zone organization is mediated by CXCR4 and CXCR5. Nat. Immunol., 2004, vol. 5, no. 9, pp. 943–952. doi: 10.1038/ni1100
  4. Arana E., Vehlow A., Harwood N.E., Vigorito E., Henderson R., Turner M., Tybulewicz V.L.J., Batista F.D. Activation of the small GTPase Rac2 via the B cell receptor regulates B cell adhesion and immunological-synapse formation. Immunity, 2008, vol. 28, pp. 88–99. doi: 10.1016/j.immuni.2007.12.003
  5. Arpin M., Chirivino D., Naba A., Zwaenepoel I. Emerging role for ERM proteins in cell adhesion and migration. Cell Adh. Migr., 2011, vol. 5, no. 2, pp. 199–206. doi: 10.4161/cam.5.2.15081
  6. Avalos A.M., Bilate A.M., Witte M.D., Tai A.K., He J., Frushicheva M.P., Thill P.D., Meyer-Wentrup F., Theile C.S., Chakraborty A.K., Zhuang X., Ploegh H.L. Monovalent engagement of the BCR activates ovalbumin-specific transnuclear B cells. J. Exp. Med., 2014, vol. 211, no. 2, pp. 365–379. doi: 10.1084/jem.20131603
  7. Bachmann M.F., Jennings G.T. Vaccine delivery: a matter of size, geometry, kinetics and molecular patterns. Nat. Rev. Immunol., 2010, vol. 10, pp. 787–796. doi: 10.1038/nri2868
  8. Bachmann M.F., Zinkernagel R.M. Neutralizing antiviral B cell responses. Annu. Rev. Immunol., 1997, vol. 15, pp. 235–270. doi: 10.1146/annurev.immunol.15.1.235
  9. Barr T.A, Gray M., Gray D. B cells: programmers of CD4 T cell responses. Infect. Disord. Drug Targets, 2012, vol. 12, pp. 222–231. doi: 10.2174/187152612800564446
  10. Becker M., Hobeika E., Jumaa H., Reth M., Maity P.C. CXCR4 signaling and function require the expression of the IgD-class B-cell antigen receptor. Proc. Natl Acad. Sci. USA, 2017, vol. 114, pp. 5231–5236. doi: 10.1073/pnas.1621512114
  11. Biro M., Romeo Y., Kroschwald S., Bovellan M., Boden A., Tcherkezian J., Roux P.P., Charras G., Paluch E.K. Cell cortex composition and homeostasis resolved by integrating proteomics and quantitative imaging. Cytoskeleton, 2013, vol. 70, no. 11, pp. 741–754. doi: 10.1002/cm.21142
  12. Bos J.L. Linking rap to cell adhesion. Curr. Opin. Cell. Biol., 2005, vol. 17, no. 2, pp. 123–128. doi: 10.1016/j.ceb.2005.02.009
  13. Bovellan M., Romeo Y., Biro M., Boden A., Chugh P., Yonis A., Vaghela M., Fritzsche M., Moulding D., Thorogate R., Jégou A., Thrasher A.J., Romet-Lemonne G., Roux P.P., Paluch E.K., Charras G. Cellular control of cortical actin nucleation. Curr. Biol., 2014, vol. 24, pp. 1628–1635. doi: 10.1016/j.cub.2014.05.069
  14. Busman-Sahay K., Drake L., Sitaram A., Marks M., Drake J.R. Cis and trans regulatory mechanisms control AP2-mediated B cell receptor endocytosis via select tyrosine-based motifs. PLoS One, 2013, vol. 8, no. 1: e54938. doi: 10.1371/journal.pone.0054938
  15. Cambier J.C. New nomenclature for the Reth motif (or ARH1/TAM/ARAM/YXXL). Immunol. Today, 1995, vol. 16, no. 2: 110. doi: 10.1016/0167-5699(95)80105-7
  16. Carrasco Y.R., Batista F.D. B cells acquire particulate antigen in a macrophage-rich area at the boundary between the follicle and the subcapsular sinus of the lymph node. Immunity, 2007, vol. 27, pp. 160–171. doi: 10.1016/j.immuni.2007.06.007
  17. Carrasco Y.R., Fleire S.J., Cameron T., Dustin M.L., Batista F.D. LFA-1/ICAM-1 interaction lowers the threshold of B cell activation by facilitating B cell adhesion and synapse formation. Immunity, 2004, vol. 20, pp. 589–599. doi: 10.1016/S1074-7613(04)00105-0
  18. Casadevall A., Janda A. Immunoglobulin isotype influences affinity and specificity. Proc. Natl Acad. Sci. USA, 2012, vol. 109, pp. 12272–12273. doi: 10.1073/pnas.1209750109
  19. Casola S., Otipoby K.L., Alimzhanov M., Humme S., Uyttersprot N., Kutok J.L., Carroll M.C., Rajewsky K. B cell receptor signal strength determines B cell fate. Nat. Immunol., 2004, vol. 5, pp. 317–327. doi: 10.1038/ni1036
  20. Chaudhuri A., Bhattacharya B., Gowrishankar K., Mayor S., Rao M. Spatiotemporal regulation of chemical reactions by active cytoskeletal remodeling specificity. Proc. Natl Acad. Sci. USA, 2011, vol. 108, pp. 14825–14830. doi: 10.1073/pnas.1100007108
  21. Chen K., Cerutti A. The function and regulation of immunoglobulin D. Curr. Opin. Immunol., 2011, vol. 23, pp. 345–352. doi: 10.1016/j.coi.2011.01.006
  22. Cheng A.M., Rowley B., Pao W., Hayday A., Bolen J.B., Pawson T. Syk tyrosine kinase required for mouse viability and B-cell development. Nature, 1995, vol. 378, no. 6554, pp. 303–306. doi: 10.1038/378303a0
  23. Cherukuri A., Cheng P.C., Sohn H.W., Pierce S.K. The CD19/CD21 complex functions to prolong B cell antigen receptor signaling from lipid rafts. Immunity, 2001, vol. 14, pp. 169–79. doi: 10.1016/S1074-7613(01)00098-X
  24. Chugh P., Clark A.G., Smith M.B., Cassani A.D., Dierkes K., Ragab A., Roux P.P., Charras G., Salbreux G., Paluch E.K. Actin cortex architecture regulates cell surface tension. Nat. Cell. Biol., 2017, vol. 19, pp. 689–697. doi: 10.1038/ncb3525
  25. Chugh P., Paluch E.K. The actin cortex at a glance. J. Cell. Sci., 2018, vol. 131, no. 14: jcs186254. doi: 10.1242/jcs.186254
  26. Clark E.A., Giltiay N.V. CD22: a regulator of innate and adaptive B cell responses and autoimmunity. Front. Immunol., 2018, vol. 9: 2235. doi: 10.3389/fimmu.2018.02235
  27. Davey A., Liu W., Sohn H.W., Brzostowski J., Pierce S.K. Understanding the initiation of B cell signaling through live cell imaging. Methods Enzymol., 2012, vol. 506, pp. 265–290. doi: 10.1016/B978-0-12-391856-7.00038-X
  28. Davids M.S., Burger J.A. Cell trafficking in chronic lymphocytic leukemia. Open J. Hematol., 2012, vol. 3: 3. doi: 10.13055/ojhmt_3_S1_03.120221
  29. Depoil D., Fleire S., Treanor B.L., Weber M., Harwood N.E., Marchbank K.L., Tybulewicz V.L.J., Batista F.D. CD19 is essential for B cell activation by promoting B cell receptor-antigen microcluster formation in response to membrane-bound ligand. Nat. Immunol., 2008, vol. 9, pp. 63–72. doi: 10.1038/ni1547
  30. Diz-Munoz A., Romanczuk P., Yu W., Bergert M., Ivanovitch K., Salbreux G., Heisenberg C.-F., Paluch E.K. Steering cell migration by alternating blebs and actin-rich protrusions. BMC Biol., 2016, vol. 14: 74. doi: 10.1186/s12915-016-0294-x
  31. Dustin M.L., Chakraborty A.K., Shaw A.S. Understanding the structure and function of the immunological synapse. Cold Spring Harb. Perspect. Biol., 2010, vol. 2: a002311. doi: 10.1101/cshperspect.a002311
  32. El-Sayed A., Harashima H. Endocytosis of gene delivery vectors: from clathrin-dependent to lipid raft-mediated endocytosis. Mol. Ther., 2013, vol. 21, no. 6, pp. 1118–1130. doi: 10.1038/mt.2013.54
  33. Fiala G.J., Kaschek D., Blumenthal B., Reth M., Timmer J., Schamel W.W. Pre-clustering of the B cell antigen receptor demonstrated by mathematically extended electron microscopy. Front. Immunol., 2013, vol. 4: 427. doi: 10.3389/fimmu.2013.00427
  34. Fleire S.J., Goldman J.P., Carrasco Y.R., Weber M., Bray D., Batista F.D. B cell ligand discrimination through a spreading and contraction response. Science, 2006, vol. 312, pp. 738–741. doi: 10.1126/science.1123940
  35. Freeman S.A., Jaumouillé V., Choi K., Hsu B.E., Wong H.S., Abraham L., Graves M.L., Coombs D., Roskelley C.D., Das R., Grinstein S., Gold M.R. Toll-like receptor ligands sensitize B-cell receptor signalling by reducing actin-dependent spatial confinement of the receptor. Nat. Commun., 2015, vol. 6: 6168. doi: 10.1038/ncomms7168
  36. Freeman S.A., Lei V., Dang-Lawson M., Mizuno K., Roskelley C.D., Gold M.R. Cofilin-mediated F-actin severing is regulated by the Rap GTPase and controls the cytoskeletal dynamics that drive lymphocyte spreading and BCR microcluster formation. J. Immunol., 2011, vol. 187, pp. 5887–5900. doi: 10.4049/jimmunol.1102233
  37. Gasparrini F., Feest C., Bruckbauer A., Mattila P.K., Muller J., Nitschke L., Bray D., Batista F.D. Nanoscale organization and dynamics of the siglec CD22 cooperate with the cytoskeleton in restraining BCR signalling. EMBO J., 2016, vol. 35, pp. 258–280. doi: 10.15252/embj.201593027
  38. Gonzalez S.F., Pitcher L.A., Mempel T., Schuerpf F., Carroll M.C. B cell acquisition of antigen in vivo. Curr. Opin. Immunol., 2009, vol. 21, pp. 251–257. doi: 10.1016/j.coi.2009.05.013
  39. Guo J., Hou L., Zhou J., Wang D., Cui Y., Feng X., Liu J. Porcine circovirus type 2 vaccines: commercial application and research advances. Viruses, 2022, vol. 14, no. 9: 2005. doi: 10.3390/v14092005
  40. Guo L., Tian J., Guo Z., Zheng B., Han S. The absence of immunoglobulin D B cell receptor-mediated signals promotes the production of autoantibodies and exacerbates glomerulonephritis in murine lupus. Clin. Exp. Immunol., 2011, vol. 164, pp. 227–235. doi: 10.1111/j.1365-2249.2011.04332.x
  41. Gupta N., Wollscheid B., Watts J.D., Scheer B., Aebersold R., DeFranco A.L. Quantitative proteomic analysis of B cell lipid rafts reveals that ezrin regulates antigen receptor-mediated lipid raft dynamics. Nat. Immunol., 2006, vol. 7, no. 6, pp. 625–633. doi: 10.1038/ni1337
  42. Hao S., August A. Actin depolymerization transduces the strength of B-cell receptor stimulation. Mol. Biol. Cell, 2005, vol. 16, no. 5, pp. 2275–2284. doi: 10.1091/mbc.e04-10-0881
  43. Haviv L., Brill-Karniely Y., Mahaffy R., Backouche F., Ben-Shaul A., Pollard T.D., Bernheim-Groswasser A. Reconstitution of the transition from lamellipodium to filopodium in a membrane-free system. Proc. Natl Acad. Sci. USA, 2006, vol. 103, pp. 4906–4911. doi: 10.1073/pnas.0508269103
  44. Hobeika E., Maity P.C., Jumaa H. Control of B cell responsiveness by isotype and structural elements of the antigen receptor. Trends Immunol., 2016, vol. 37, no. 5, pp. 310–320. doi: 10.1016/j.it.2016.03.004
  45. Hong J.J., Yankee T.M., Harrison M.L., Geahlen R.L. Regulation of signaling in B cells through the phosphorylation of Syk on linker region tyrosines. A mechanism for negative signaling by the Lyn tyrosine kinase. J. Biol. Chem., 2002, vol. 277, pp. 31703–31714. doi: 10.1074/jbc.M201362200
  46. Huang B., Babcock H., Zhuang X. Breaking the diffraction barrier: super-resolution imaging of cells. Cell, 2010, vol. 143, pp. 1047–1058. doi: 10.1016/j.cell.2010.12.002
  47. Huang L., Zhang Y., Xu C., Gu X., Niu L., Wang J., Sun X., Bai X., Xuan X., Li Q., Shi C., Yu B., Miller H., Yang G., Westerberg L.S., Liu W., Song W., Zhao X., Liu C. Rictor positively regulates B cell receptor signaling by modulating actin reorganization via ezrin. PLoS Biol., 2017, vol. 15: e2001750. doi: 10.1371/journal.pbio.2001750
  48. Ichetovkin I., Grant W., Condeelis J. Cofilin produces newly polymerized actin filaments that are preferred for dendritic nucleation by the Arp2/3 complex. Curr. Biol., 2002, vol. 12, pp. 79–84. doi: 10.1016/S0960-9822(01)00629-7
  49. Iwasaki A., Medzhitov R. Control of adaptive immunity by the innate immune system. Nat. Immunol., 2015, vol. 16, no. 4, pp. 343–353. doi: 10.1038/ni.3123
  50. Jacobson O., Weiss I.D. CXCR4 chemokine receptor overview: biology, pathology and applications in imaging and therapy. Theranostics, 2013, vol. 3, no. 1, pp. 1–2. doi: 10.7150/thno.5760
  51. Janeway C.A. Jr. Approaching the asymptote? Evolution and revolution in immunology. Cold Spring Harb. Symp. Quant. Biol., 1989, vol. 54, pt 1, pp. 1–13. doi: 10.1101/sqb.1989.054.01.003
  52. Jang C., Machtaler S., Matsuuchi L. The role of Ig-α/β in B cell antigen receptor internalization. Immunol. Lett., 2010, vol. 134, no. 1, pp. 75–82. doi: 10.1016/j.imlet.2010.09.001
  53. Karpova D., Bonig H. Concise review: CXCR4/CXCL12 signaling in immature hematopoiesis — lessons from pharmacological and genetic models. Stem Cells, 2015, vol. 33, pp. 2391–2399. doi: 10.1002/stem.2054
  54. Ketchum C., Miller H., Song W., Upadhyaya A. Ligand mobility regulates B cell receptor clustering and signaling activation. Biophys. J., 2014, vol. 106, pp. 26–36. doi: 10.1016/j.bpj.2013.10.043
  55. Ketchum C.M., Sun X., Suberi A., Fourkas J.T., Song W., Upadhyaya A. Subcellular topography modulates actin dynamics and signaling in B-cells. Mol. Biol. Cell., 2018, vol. 29, pp. 1732–1742. doi: 10.1091/mbc.E17-06-0422
  56. Kim Y.J., Sekiya F., Poulin B., Bae Y.S., Rhee S.G. Mechanism of B-cell receptor-induced phosphorylation and activation of phospholipase C-gamma2. Mol. Cell. Biol., 2004, vol. 24, pp. 9986–9999. doi: 10.1128/MCB.24.22.9986-9999.2004
  57. Klasener K., Maity P.C., Hobeika E., Yang J., Reth M. B cell activation involves nanoscale receptor reorganizations and inside-out signaling by Syk. Elife, 2014, vol. 3: e02069. doi: 10.7554/eLife.02069
  58. Klein J.S., Bjorkman P.J. Few and far between: how HIV may be evading antibody avidity. PLoS Pathog., 2010, vol. 6, no. 5: e1000908. doi: 10.1371/journal.ppat.1000908
  59. Koster D.V., Husain K., Iljazi E., Bhat A., Bieling P., Mullins R.D., Rao M., Mayor S. Actomyosin dynamics drive local membrane component organization in an in vitro active composite layer. Proc. Natl Acad. Sci. USA, 2016, vol. 113, no. 12, pp. 1645–1654. doi: 10.1073/pnas.1514030113
  60. Kurosaki T., Hikida M. Tyrosine kinases and their substrates in B lymphocytes. Immunol. Rev., 2009, vol. 228, pp. 132–148. doi: 10.1111/j.1600-065X.2008.00748.x
  61. Kurosaki T., Shinohara H., Baba Y. B cell signaling and fate decision. Ann. Rev. Immunol., 2010, vol. 28, pp. 21–55. doi: 10.1146/annurev.immunol.021908.132541
  62. Lee J., Sengupta P., Brzostowski J., Lippincott-Schwartz J., Pierce S.K. The nanoscale spatial organization of B-cell receptors on immunoglobulin M- and G-expressing human B-cells. Mol. Biol. Cell, 2017, vol. 28, pp. 511–523. doi: 10.1091/mbc.e16-06-0452
  63. Li J., Yin W., Jing Y., Kang D., Yang L., Cheng J., Yu Z., Peng Z., Li X., Wen Y., Sun X., Ren B., Liu C. The coordination between B Cell receptor signaling and the actin cytoskeleton during B cell activation. Front. Immunol., 2019, vol. 9: 3096. doi: 10.3389/fimmu.2018.03096
  64. Lillemeier B.F., Mörtelmaier M.A., Forstner M.B., Huppa J.B., Groves J.T., Davis M.M. TCR and Lat are expressed on separate protein islands on T cell membranes and concatenate during activation. Nat. Immunol., 2010, vol. 11, pp. 90–96. doi: 10.1038/ni.1832
  65. Liu C., Miller H., Hui K.L., Grooman B., Bolland S., Upadhyaya A., Song W. A balance of Bruton’s tyrosine kinase and SHIP activation regulates B cell receptor cluster formation by controlling actin remodeling. J. Immunol., 2011, vol. 187, pp. 230–239. doi: 10.4049/jimmunol.1100157
  66. Liu C., Miller H., Orlowski G., Hang H., Upadhyaya A., Song W. Actin reorganization is required for the formation of polarized B cell receptor signalosomes in response to both soluble and membrane-associated antigens. J. Immunol., 2012, vol. 188, pp. 3237–3246. doi: 10.4049/jimmunol.1103065
  67. Liu W., Meckel T., Tolar P., Sohn H.W., Pierce S.K. Antigen affinity discrimination is an intrinsic function of the B cell receptor. J. Exp. Med., 2010, vol. 207, pp. 1095–1111. doi: 10.1084/jem.20092123
  68. Lockey C., Young H., Brown J., Dixon A.M. Characterization of interactions within the Igα/Igβ transmembrane domains of the human B-cell receptor provides insights into receptor assembly. J. Biol. Chem., 2022, vol. 298, no. 5: 101843. doi: 10.1016/j.jbc.2022.101843
  69. Logue J.S., Cartagena-Rivera A.X., Baird M.A., Davidson M.W., Chadwick R.S., Waterman C.M. Erk regulation of actin capping and bundling by Eps8 promotes cortex tension and leader bleb-based migration. Elife, 2015, vol. 4: e08314. doi: 10.7554/eLife.08314
  70. Lu Y., Zhang Y., Pan M.H., Kim N.H., Sun S.C., Cui X.S. Daam1 regulates fascin for actin assembly in mouse oocyte meiosis. Cell Cycle, 2017, vol. 16, pp. 1350–1356. doi: 10.1080/15384101.2017.1325045
  71. Lutz C., Ledermann B., Kosco-Vilbois M.H., Ochsenbein A.F., Zinkernagel R.M., Kohler G., Brombacher F. IgD can largely substitute for loss of IgM function in B cells. Nature, 1998, vol. 393, pp. 797–801. doi: 10.1038/31716
  72. Maity P.C., Blount A., Jumaa H., Ronneberger O., Lillemeier B.F., Reth M. B cell antigen receptors of the IgM and IgD classes are clustered in different protein islands that are altered during B cell activation. Sci. Signal., 2015, vol. 8, no. 394: ra93. doi: 10.1126/scisignal.2005887
  73. Maity P.C., Datta M., Nicolò A., Jumaa H. Isotype specific assembly of B cell antigen receptors and synergism with chemokine receptor CXCR4. Front. Immunol., 2018, vol. 18, no. 9: 2988. doi: 10.3389/fimmu.2018.02988
  74. Maity P.C., Yang J., Klaesener K., Reth M. The nanoscale organization of the B lymphocyte membrane. Biochim. Biophys. Acta, 2015, vol. 1853, pp. 830–840. doi: 10.1016/j.bbamcr.2014.11.010
  75. Mattila P.K., Batista F.D., Treanor B. Dynamics of the actin cytoskeleton mediates receptor cross talk: an emerging concept in tuning receptor signaling. J. Cell Biol., 2016, vol. 212, pp. 267–280. doi: 10.1083/jcb.201504137
  76. Mattila P.K., Feest C., Depoil D., Treanor B., Montaner B., Otipoby K.L., Carter R., Justement L.B., Bruckbauer A., Batista F.D. The actin and tetraspanin networks organize receptor nanoclusters to regulate B cell receptor-mediated signaling. Immunity, 2013, vol. 38, pp. 461–474. doi: 10.1016/j.immuni.2012.11.019
  77. Mitchison N.A. T-cell-B-cell cooperation. Nat. Rev. Immunol., 2004, vol. 4, pp. 308–312. doi: 10.1038/nri1334
  78. Mohsen M.O., Bachmann M.F. Virus-like particle vaccinology, from bench to bedside. Cell. Mol. Immunol., 2022, vol. 19, pp. 993–1011. doi: 10.1038/s41423-022-00897-8
  79. Muller J., Obermeier I., Wohner M., Brandl C., Mrotzek S., Angermuller S., Maity P.C., Reth M., Nitschke L. CD22 ligand-binding and signaling domains reciprocally regulate B-cell Ca2+ signaling. Proc. Natl Acad. Sci. USA, 2013, vol. 110, pp. 12402–12407. doi: 10.1073/pnas.1304888110
  80. Nitschke L., Kosco M.H., Kohler G., Lamers M.C. Immunoglobulin D-deficient mice can mount normal immune responses to thymus-independent and -dependent antigens. Proc. Natl Acad. Sci. USA, 1993, vol. 90, pp. 1887–1891. doi: 10.1073/pnas.90.5.1887
  81. Nooraei S., Bahrulolum H., Hoseini Z.S., Katalani C., Hajizade A., Easton A.J., Ahmadian G. Virus-like particles: preparation, immunogenicity and their roles as nanovaccines and drug nanocarriers. J. Nanobiotechnology, 2021, vol. 19, no. 1: 59. doi: 10.1186/s12951-021-00806-7
  82. Noviski M., Mueller J.L., Satterthwaite A., Garrett-Sinha L.A., Brombacher F., Zikherman J. IgM and IgD B cell receptors differentially respond to endogenous antigens and control B cell fate. Elife, 2018, vol. 7: e35074. doi: 10.7554/eLife.35074
  83. Paluch E.K., Raz E. The role and regulation of blebs in cell migration. Curr. Opin. Cell. Biol., 2013, vol. 25, pp. 582–590. doi: 10.1016/j.ceb.2013.05.005
  84. Peng J., Wallar B.J., Flanders A., Swiatek P.J., Alberts A.S. Disruption of the diaphanous-related formin Drf1 gene encoding mDia1 reveals a role for Drf3 as an effector for Cdc42. Curr. Biol., 2003, vol. 13, pp. 534–545. doi: 10.1016/S0960-9822(03)00170-2
  85. Ponuwei G.A. A glimpse of the ERM proteins. J. Biomed. Sci., 2016, vol. 23: 35. doi: 10.1186/s12929-016-0246-3
  86. Rajewsky K. Clonal selection and learning in the antibody system. Nature, 1996, vol. 381, pp. 751–758. doi: 10.1038/381751a0
  87. Reth M. Antigen receptor tail clue. Nature, 1989, vol. 338, pp. 383–384. doi: 10.1038/338383b0
  88. Ricker E., Chowdhury L., Yi W., Pernis A.B. The RhoA-ROCK pathway in the regulation of T and B cell responses. F1000 Res., 2016, vol. 5: F1000. doi: 10.12688/f1000research.7522.1
  89. Roberts A.D., Davenport T.M., Dickey A.M., Ahn R., Sochacki K.A., Taraska J.W. Structurally distinct endocytic pathways for B cell receptors in B lymphocytes. Mol. Biol. Cell, 2020, vol. 31, no. 25, pp. 2826–2840. doi: 10.1091/mbc.E20-08-0532
  90. Roes J., Rajewsky K. Immunoglobulin D (IgD)-deficient mice reveal an auxiliary receptor function for IgD in antigen-mediated recruitment of B cells. J. Exp. Med., 1993, vol. 177, pp. 45–55. doi: 10.1084/jem.177.1.45
  91. Rolli V., Gallwitz M., Wossning T., Flemming A., Schamel W.W., Zurn C., Reth M. Amplification of B cell antigen receptor signaling by a Syk/ITAM positive feedback loop. Mol. Cell, 2002, vol. 10, no. 5, pp. 1057–1069. doi: 10.1016/s1097-2765(02)00739-6
  92. Roman-Garcia S., Merino-Cortes S.V., Gardeta S.R., de Bruijn J.W., Hendriks R.W., Carrasco Y.R. Distinct roles for bruton’s tyrosine kinase in b cell immune synapse formation. Front. Immunol., 2018, vol. 9: 2027. doi: 10.3389/fimmu.2018.02027
  93. Rostam H.M., Singh S., Vrana N.E., Alexander M.R., Ghaemmaghami A.M. Impact of surface chemistry and topography on the function of antigen presenting cells. Biomater. Sci., 2015, vol. 3, pp. 424–441. doi: 10.1039/C4BM00375F
  94. Schnyder T., Castello A., Feest C., Harwood N.E., Oellerich T., Urlaub H., Engelke M., Wienands J., Bruckbauer A., Batista F.D. B cell receptor-mediated antigen gathering requires ubiquitin ligase Cbl and adaptors Grb2 and Dok-3 to recruit dynein to the signaling microcluster. Immunity, 2011, vol. 34, pp. 905–918. doi: 10.1016/j.immuni.2011.06.001
  95. Sohn H.W., Tolar P., Pierce S.K. Membrane heterogeneities in the formation of B cell receptor-Lyn kinase microclusters and the immune synapse. J. Cell Biol., 2008, vol. 182, pp. 367–379. doi: 10.1083/jcb.200802007
  96. Song W., Liu C., Upadhyaya A. The pivotal position of the actin cytoskeleton in the initiation and regulation of B cell receptor activation. Biochim. Biophys. Acta, 2014, vol. 1838, pp. 569–578. doi: 10.1016/j.bbamem.2013.07.016
  97. Suzuki K., Ritchie K., Kajikawa E., Fujiwara T., Kusumi A. Rapid hop diffusion of a G-protein-coupled receptor in the plasma membrane as revealed by single-molecule techniques. Biophys. J., 2005, vol. 88, pp. 3659–3680. doi: 10.1529/biophysj.104.048538
  98. Tolar P., Hanna J., Krueger P.D., Pierce S.K. The constant region of the membrane immunoglobulin mediates B cell-receptor clustering and signaling in response to membrane antigens. Immunity, 2009, vol. 30, pp. 44–55. doi: 10.1016/j.immuni.2008.11.007
  99. Tolar P., Pierce S.K. A conformation-induced oligomerization model for B cell receptor microclustering and signaling. Curr. Top. Microbiol. Immunol., 2010, vol. 340, pp. 155–169. doi: 10.1007/978-3-642-03858-7_8
  100. Tolar P., Sohn H.W., Pierce S.K. The initiation of antigen-induced B cell antigen receptor signaling viewed in living cells by fluorescence resonance energy transfer. Nat. Immunol., 2005, vol. 6, pp. 1168–1176. doi: 10.1038/ni1262
  101. Tolar P. Cytoskeletal control of B cell responses to antigens. Nat. Rev. Immunol., 2017, vol. 17, pp. 621–634. doi: 10.1038/nri.2017.67
  102. Torres M., May R., Scharff M.D., Casadevall A. Variable-region-identical antibodies differing in isotype demonstrate differences in fine specificity and idiotype. J. Immunol., 2005, vol. 174, pp. 2132–2142. doi: 10.4049/jimmunol.174.4.2132
  103. Treanor B., Depoil D., Bruckbauer A., Batista F.D. Dynamic cortical actin remodeling by ERM proteins controls BCR microcluster organization and integrity. J. Exp. Med., 2011, vol. 208, pp. 1055–1068. doi: 10.1084/jem.20101125
  104. Treanor B., Depoil D., Gonzalez-Granja A., Barral P., Weber M., Dushek O., Bruckbauer A., Batista F.D. The membrane skeleton controls diffusion dynamics and signaling through the B cell receptor. Immunity, 2010, vol. 32, pp. 187–199. doi: 10.1016/j.immuni.2009.12.005
  105. Tudor D., Yu H., Maupetit J., Drillet A.S., Bouceba T., Schwartz-Cornil I., Lopalco L., Tuffery P., Bomsel M. Isotype modulates epitope specificity, affinity, and antiviral activities of anti-HIV-1 human broadly neutralizing 2F5 antibody. Proc. Natl Acad. Sci. USA, 2012, vol. 109, pp. 12680–12685. doi: 10.1073/pnas.1200024109
  106. Übelhart R., Hug E., Bach M.P., Wossning T., Duhren-von Minden M., Horn A.H., Tsiantoulas D., Kometani K., Kurosaki T., Binder C.J., Sticht H., Nitschke L., Reth M., Jumaa H. Responsiveness of B cells is regulated by the hinge region of IgD. Nat. Immunol., 2015, vol. 16, pp. 534–543. doi: 10.1038/ni.3141
  107. Van Zelm M.C., Smet J., Adams B., Mascart F., Schandene L., Janssen F., Ferster A., Kuo C., Levy S., van Dongen J.J.M., van der Burg M. CD81 gene defect in humans disrupts CD19 complex formation and leads to antibody deficiency. J. Clin. Invest., 2010, vol. 120, pp. 1265–1274. doi: 10.1172/JCI39748
  108. Venkitaraman A.R., Williams G.T., Dariavach P., Neuberger M.S. The B-cell antigen receptor of the five immunoglobulin classes. Nature, 1991, vol. 352, pp. 777–781. doi: 10.1038/352777a0
  109. Volkmann C., Brings N., Becker M., Hobeika E., Yang J. Molecular requirements of the B-cell antigen receptor for sensing monovalent antigens. EMBO J., 2016, vol. 35, pp. 2371–2381. doi: 10.15252/embj.201694177
  110. Wang J.C., Bolger-Munro M., Gold M.R. Visualizing the actin and microtubule cytoskeletons at the B-cell immune synapse using stimulated emission depletion (STED) microscopy. J. Visual Exp., 2018, vol. 134: 57028. doi: 10.3791/57028
  111. Wasim L., Treanor B. Single-particle tracking of cell surface proteins. Methods Mol. Biol., 2018, vol. 1707, pp. 183–192. doi: 10.1007/978-1-4939-7474-0_13
  112. Weber M., Treanor B., Depoil D., Shinohara H., Harwood N.E., Hikida M., Kurosaki T., Batista F.D. Phospholipase C-gamma2 and Vav cooperate within signaling microclusters to propagate B cell spreading in response to membrane-bound antigen. J. Exp. Med., 2008, vol. 205, pp. 853–868. doi: 10.1084/jem.20072619
  113. Weiss A., Littman D.R. Signal transduction by lymphocyte antigen receptors. Cell, 1994, vol. 76, pp. 263–274. doi: 10.1016/0092-8674(94)90334-4
  114. Welch M.D., DePace A.H., Verma S., Iwamatsu A., Mitchison T.J. The human Arp2/3 complex is composed of evolutionarily conserved subunits and is localized to cellular regions of dynamic actin filament assembly. J. Cell Biol., 1997, vol. 138, pp. 375–384. doi: 10.1083/jcb.138.2.375
  115. Yang J., Reth M. Oligomeric organization of the B-cell antigen receptor on resting cells. Nature, 2010, vol. 467, no. 7314, pp. 465–469. doi: 10.1038/nature09357
  116. Yang J., Reth M. The dissociation activation model of B cell antigen receptor triggering. FEBS Lett., 2010, vol. 584, pp. 4872–4877. doi: 10.1016/j.febslet.2010.09.045
  117. Zepeda-Cervantes J., Ramírez-Jarquín J.O., Vaca L. Interaction between virus-like particles (VLPs) and pattern recognition receptors (PRRs) from dendritic cells (DCs): toward better engineering of VLPs. Front. Immunol., 2020, vol. 11: 1100. doi: 10.3389/fimmu.2020.01100

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Талаев В.Ю., Светлова М.В., Заиченко И.Е., Бабайкина О.Н., Воронина Е.В., Чистяков С.И., 2023

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».