Взаимодействие в-клеточных рецепторов и антигенов с различным пространственным расположением
- Авторы: Талаев В.Ю.1, Светлова М.В.1, Заиченко И.Е.1, Бабайкина О.Н.1, Воронина Е.В.1, Чистяков С.И.2
-
Учреждения:
- ФБУН Нижегородский научно-исследовательский институт эпидемиологии и микробиологии им. академика И.Н. Блохиной Роспотребнадзора
- ГБУЗ НО Нижегородский областной центр крови им. Н.Я. Климовой
- Выпуск: Том 13, № 5 (2023)
- Страницы: 809-821
- Раздел: ОБЗОРЫ
- URL: https://bakhtiniada.ru/2220-7619/article/view/158885
- DOI: https://doi.org/10.15789/2220-7619-EOB-14033
- ID: 158885
Цитировать
Полный текст
Аннотация
В-клеточные рецепторы могут взаимодействовать с эпитопами антигенов на различных объектах: макромолекулах, микроорганизмах или на поверхности других клеток, например, фолликулярных дендритных клеток. Соответственно, В-клетки, с одной стороны, имеют возможность оценивать расположение эпитопов на поверхности патогена, а с другой стороны, они должны адаптировать свой рецепторный аппарат к различным вариантам расположения эпитопов и свойствам несущих антиген поверхностей. Действительно, В-клеточные рецепторы и антитела лучше связывают объекты с регулярным и плотным расположением эпитопов, характерным для многих патогенов. В результате, такое расположение эпитопов может распознаваться как патоген-ассоциированный геометрический паттерн, однако условия этого распознавания зависят от изотипа мембранного иммуноглобулина и степени зрелости В-лимфоцита. Юные В-клетки экспрессируют мембранный IgM, который участвует в развитии В-клеток и селекции их репертуара. Рецепторы с IgM не предъявляют жестких требований к расположению эпитопов и могут активировать В-клетку даже при связывании моновалентного антигена. Рецепторы с мембранным IgD экспрессируются позднее и преобладают на наивных В-клетках перед их вступлением в иммунный ответ. Эти рецепторы оптимизированы для двухточечного связывания антигена и строго нуждаются в таком типе взаимодействия для индукции активационного сигнала. До контакта с антигеном В-клеточные рецепторы сгруппированы в дискретных зонах мембраны — нанокластерах, за счет тесных взаимодействий с актиновым цитоскелетом. Контакт с антигеном ведет к отсоединению рецепторов от цитоскелета, росту их подвижности и объединению нанокластеров в микрокластеры — крупные скопления, обогащенные сигнальными молекулами. Наиболее динамичные изменения наблюдаются при контакте с антигеном, фиксированным на мембране другой клетки. В этом случае свободный актин перемещается на периферию зоны межклеточного контакта, где формирует цитоскелет отростков, несущих скопления рецепторов. Отростки распространяются по поверхности клетки-партнера, а затем сокращаются, перемещая связавшие антиген микрокластеры в центр зоны контакта. Наконец, микрокластеры объединяются в центральный кластер иммунного синапса, интенсивность активационного сигнала падает, и клетка готовится к эндоцитозу сгруппированных на локальном участке антигенов. Таким образом, структура В-клеточных рецепторов может способствовать реакции В-лимфоцита на антигены с характерным пространственным расположением, тогда как динамическое взаимодействие В-клеточного рецепторного аппарата с цитоскелетом позволяет оптимизировать связывание антигенов, представленных на разнообразных носителях. Знание пространственных аспектов распознавания антигенов может быть полезно для конструирования вакцин на основе вирусоподобных частиц или антигенов на других искусственных носителях.
Ключевые слова
Полный текст
Открыть статью на сайте журналаОб авторах
Владимир Юрьевич Талаев
ФБУН Нижегородский научно-исследовательский институт эпидемиологии и микробиологии им. академика И.Н. Блохиной Роспотребнадзора
Email: talaev@inbox.ru
ORCID iD: 0000-0003-1993-0622
SPIN-код: 5958-4703
Scopus Author ID: 8547169700
д.м.н., профессор, зав. лабораторией клеточной иммунологии
Россия, Нижний НовгородМария Владимировна Светлова
ФБУН Нижегородский научно-исследовательский институт эпидемиологии и микробиологии им. академика И.Н. Блохиной Роспотребнадзора
Email: marya.talaeva@yandex.ru
ORCID iD: 0000-0003-4097-6780
SPIN-код: 8340-7583
Scopus Author ID: 36471139400
к.б.н., старший научный сотрудник лаборатории клеточной иммунологии
Россия, Нижний НовгородИрина Евгеньевна Заиченко
ФБУН Нижегородский научно-исследовательский институт эпидемиологии и микробиологии им. академика И.Н. Блохиной Роспотребнадзора
Автор, ответственный за переписку.
Email: imm.irina@mail.ru
ORCID iD: 0000-0001-5063-3111
SPIN-код: 3522-4289
Scopus Author ID: 8547169800
к.б.н., ведущий научный сотрудник лаборатории клеточной иммунологии
Россия, Нижний НовгородОльга Николаевна Бабайкина
ФБУН Нижегородский научно-исследовательский институт эпидемиологии и микробиологии им. академика И.Н. Блохиной Роспотребнадзора
Email: olga_babaykina@inbox.ru
ORCID iD: 0000-0003-4527-6134
Scopus Author ID: 8547169900
к.м.н., старший научный сотрудник лаборатории клеточной иммунологии
Россия, Нижний НовгородЕлена Викторовна Воронина
ФБУН Нижегородский научно-исследовательский институт эпидемиологии и микробиологии им. академика И.Н. Блохиной Роспотребнадзора
Email: el2v@mail.ru
ORCID iD: 0000-0003-1801-9693
SPIN-код: 6615-7674
Scopus Author ID: 56841316700
к.б.н., старший научный сотрудник лаборатории клеточной иммунологии
Россия, Нижний НовгородСергей Иванович Чистяков
ГБУЗ НО Нижегородский областной центр крови им. Н.Я. Климовой
Email: nock4328880@mail.ru
SPIN-код: 2214-7677
д.м.н., профессор, главный врач
Россия, Нижний НовгородСписок литературы
- Кудрявцев И.В., Головкин А.С., Тотолян А.А. Т-хелперы и их клетки-мишени при COVID-19 // Инфекция и иммунитет. 2022. Т. 12, № 3, C. 409–426. [Kudryavtsev I.V., Golovkin A.S., Totolian A.A. T helper cell subsets and related target cells in acute COVID-19 Infektsiya i immunitet = Russian Journal of Infection and Immunity, 2022, vol. 12, no. 3, pp. 409–426. (In Russ.)] doi: 10.15789/2220-7619-THC-1882
- Талаев В.Ю., Заиченко И.Е., Бабайкина О.Н., Светлова М.В., Воронина Е.В. Пути эндоцитоза вирусоподобных частиц и презентация поглощенных антигенов // Инфекция и иммунитет. 2023. Т. 13, № 2. C. 219–233. [Talayev V.Y., Zaichenko I.Y., Babaykina O.N., Svetlova M.V., Voronina E.V. Virus-like particle endocytosis pathways and presentation of captured antigens Infektsiya i immunitet = Russian Journal of Infection and Immunity, 2023, vol. 13, no. 2, pp. 219–233. (In Russ.)] doi: 10.15789/2220-7619-VPE-8045
- Allen C.D., Ansel K.M., Low C., Lesley R., Tamamura H., Fujii N., Cyster J.G. Germinal center dark and light zone organization is mediated by CXCR4 and CXCR5. Nat. Immunol., 2004, vol. 5, no. 9, pp. 943–952. doi: 10.1038/ni1100
- Arana E., Vehlow A., Harwood N.E., Vigorito E., Henderson R., Turner M., Tybulewicz V.L.J., Batista F.D. Activation of the small GTPase Rac2 via the B cell receptor regulates B cell adhesion and immunological-synapse formation. Immunity, 2008, vol. 28, pp. 88–99. doi: 10.1016/j.immuni.2007.12.003
- Arpin M., Chirivino D., Naba A., Zwaenepoel I. Emerging role for ERM proteins in cell adhesion and migration. Cell Adh. Migr., 2011, vol. 5, no. 2, pp. 199–206. doi: 10.4161/cam.5.2.15081
- Avalos A.M., Bilate A.M., Witte M.D., Tai A.K., He J., Frushicheva M.P., Thill P.D., Meyer-Wentrup F., Theile C.S., Chakraborty A.K., Zhuang X., Ploegh H.L. Monovalent engagement of the BCR activates ovalbumin-specific transnuclear B cells. J. Exp. Med., 2014, vol. 211, no. 2, pp. 365–379. doi: 10.1084/jem.20131603
- Bachmann M.F., Jennings G.T. Vaccine delivery: a matter of size, geometry, kinetics and molecular patterns. Nat. Rev. Immunol., 2010, vol. 10, pp. 787–796. doi: 10.1038/nri2868
- Bachmann M.F., Zinkernagel R.M. Neutralizing antiviral B cell responses. Annu. Rev. Immunol., 1997, vol. 15, pp. 235–270. doi: 10.1146/annurev.immunol.15.1.235
- Barr T.A, Gray M., Gray D. B cells: programmers of CD4 T cell responses. Infect. Disord. Drug Targets, 2012, vol. 12, pp. 222–231. doi: 10.2174/187152612800564446
- Becker M., Hobeika E., Jumaa H., Reth M., Maity P.C. CXCR4 signaling and function require the expression of the IgD-class B-cell antigen receptor. Proc. Natl Acad. Sci. USA, 2017, vol. 114, pp. 5231–5236. doi: 10.1073/pnas.1621512114
- Biro M., Romeo Y., Kroschwald S., Bovellan M., Boden A., Tcherkezian J., Roux P.P., Charras G., Paluch E.K. Cell cortex composition and homeostasis resolved by integrating proteomics and quantitative imaging. Cytoskeleton, 2013, vol. 70, no. 11, pp. 741–754. doi: 10.1002/cm.21142
- Bos J.L. Linking rap to cell adhesion. Curr. Opin. Cell. Biol., 2005, vol. 17, no. 2, pp. 123–128. doi: 10.1016/j.ceb.2005.02.009
- Bovellan M., Romeo Y., Biro M., Boden A., Chugh P., Yonis A., Vaghela M., Fritzsche M., Moulding D., Thorogate R., Jégou A., Thrasher A.J., Romet-Lemonne G., Roux P.P., Paluch E.K., Charras G. Cellular control of cortical actin nucleation. Curr. Biol., 2014, vol. 24, pp. 1628–1635. doi: 10.1016/j.cub.2014.05.069
- Busman-Sahay K., Drake L., Sitaram A., Marks M., Drake J.R. Cis and trans regulatory mechanisms control AP2-mediated B cell receptor endocytosis via select tyrosine-based motifs. PLoS One, 2013, vol. 8, no. 1: e54938. doi: 10.1371/journal.pone.0054938
- Cambier J.C. New nomenclature for the Reth motif (or ARH1/TAM/ARAM/YXXL). Immunol. Today, 1995, vol. 16, no. 2: 110. doi: 10.1016/0167-5699(95)80105-7
- Carrasco Y.R., Batista F.D. B cells acquire particulate antigen in a macrophage-rich area at the boundary between the follicle and the subcapsular sinus of the lymph node. Immunity, 2007, vol. 27, pp. 160–171. doi: 10.1016/j.immuni.2007.06.007
- Carrasco Y.R., Fleire S.J., Cameron T., Dustin M.L., Batista F.D. LFA-1/ICAM-1 interaction lowers the threshold of B cell activation by facilitating B cell adhesion and synapse formation. Immunity, 2004, vol. 20, pp. 589–599. doi: 10.1016/S1074-7613(04)00105-0
- Casadevall A., Janda A. Immunoglobulin isotype influences affinity and specificity. Proc. Natl Acad. Sci. USA, 2012, vol. 109, pp. 12272–12273. doi: 10.1073/pnas.1209750109
- Casola S., Otipoby K.L., Alimzhanov M., Humme S., Uyttersprot N., Kutok J.L., Carroll M.C., Rajewsky K. B cell receptor signal strength determines B cell fate. Nat. Immunol., 2004, vol. 5, pp. 317–327. doi: 10.1038/ni1036
- Chaudhuri A., Bhattacharya B., Gowrishankar K., Mayor S., Rao M. Spatiotemporal regulation of chemical reactions by active cytoskeletal remodeling specificity. Proc. Natl Acad. Sci. USA, 2011, vol. 108, pp. 14825–14830. doi: 10.1073/pnas.1100007108
- Chen K., Cerutti A. The function and regulation of immunoglobulin D. Curr. Opin. Immunol., 2011, vol. 23, pp. 345–352. doi: 10.1016/j.coi.2011.01.006
- Cheng A.M., Rowley B., Pao W., Hayday A., Bolen J.B., Pawson T. Syk tyrosine kinase required for mouse viability and B-cell development. Nature, 1995, vol. 378, no. 6554, pp. 303–306. doi: 10.1038/378303a0
- Cherukuri A., Cheng P.C., Sohn H.W., Pierce S.K. The CD19/CD21 complex functions to prolong B cell antigen receptor signaling from lipid rafts. Immunity, 2001, vol. 14, pp. 169–79. doi: 10.1016/S1074-7613(01)00098-X
- Chugh P., Clark A.G., Smith M.B., Cassani A.D., Dierkes K., Ragab A., Roux P.P., Charras G., Salbreux G., Paluch E.K. Actin cortex architecture regulates cell surface tension. Nat. Cell. Biol., 2017, vol. 19, pp. 689–697. doi: 10.1038/ncb3525
- Chugh P., Paluch E.K. The actin cortex at a glance. J. Cell. Sci., 2018, vol. 131, no. 14: jcs186254. doi: 10.1242/jcs.186254
- Clark E.A., Giltiay N.V. CD22: a regulator of innate and adaptive B cell responses and autoimmunity. Front. Immunol., 2018, vol. 9: 2235. doi: 10.3389/fimmu.2018.02235
- Davey A., Liu W., Sohn H.W., Brzostowski J., Pierce S.K. Understanding the initiation of B cell signaling through live cell imaging. Methods Enzymol., 2012, vol. 506, pp. 265–290. doi: 10.1016/B978-0-12-391856-7.00038-X
- Davids M.S., Burger J.A. Cell trafficking in chronic lymphocytic leukemia. Open J. Hematol., 2012, vol. 3: 3. doi: 10.13055/ojhmt_3_S1_03.120221
- Depoil D., Fleire S., Treanor B.L., Weber M., Harwood N.E., Marchbank K.L., Tybulewicz V.L.J., Batista F.D. CD19 is essential for B cell activation by promoting B cell receptor-antigen microcluster formation in response to membrane-bound ligand. Nat. Immunol., 2008, vol. 9, pp. 63–72. doi: 10.1038/ni1547
- Diz-Munoz A., Romanczuk P., Yu W., Bergert M., Ivanovitch K., Salbreux G., Heisenberg C.-F., Paluch E.K. Steering cell migration by alternating blebs and actin-rich protrusions. BMC Biol., 2016, vol. 14: 74. doi: 10.1186/s12915-016-0294-x
- Dustin M.L., Chakraborty A.K., Shaw A.S. Understanding the structure and function of the immunological synapse. Cold Spring Harb. Perspect. Biol., 2010, vol. 2: a002311. doi: 10.1101/cshperspect.a002311
- El-Sayed A., Harashima H. Endocytosis of gene delivery vectors: from clathrin-dependent to lipid raft-mediated endocytosis. Mol. Ther., 2013, vol. 21, no. 6, pp. 1118–1130. doi: 10.1038/mt.2013.54
- Fiala G.J., Kaschek D., Blumenthal B., Reth M., Timmer J., Schamel W.W. Pre-clustering of the B cell antigen receptor demonstrated by mathematically extended electron microscopy. Front. Immunol., 2013, vol. 4: 427. doi: 10.3389/fimmu.2013.00427
- Fleire S.J., Goldman J.P., Carrasco Y.R., Weber M., Bray D., Batista F.D. B cell ligand discrimination through a spreading and contraction response. Science, 2006, vol. 312, pp. 738–741. doi: 10.1126/science.1123940
- Freeman S.A., Jaumouillé V., Choi K., Hsu B.E., Wong H.S., Abraham L., Graves M.L., Coombs D., Roskelley C.D., Das R., Grinstein S., Gold M.R. Toll-like receptor ligands sensitize B-cell receptor signalling by reducing actin-dependent spatial confinement of the receptor. Nat. Commun., 2015, vol. 6: 6168. doi: 10.1038/ncomms7168
- Freeman S.A., Lei V., Dang-Lawson M., Mizuno K., Roskelley C.D., Gold M.R. Cofilin-mediated F-actin severing is regulated by the Rap GTPase and controls the cytoskeletal dynamics that drive lymphocyte spreading and BCR microcluster formation. J. Immunol., 2011, vol. 187, pp. 5887–5900. doi: 10.4049/jimmunol.1102233
- Gasparrini F., Feest C., Bruckbauer A., Mattila P.K., Muller J., Nitschke L., Bray D., Batista F.D. Nanoscale organization and dynamics of the siglec CD22 cooperate with the cytoskeleton in restraining BCR signalling. EMBO J., 2016, vol. 35, pp. 258–280. doi: 10.15252/embj.201593027
- Gonzalez S.F., Pitcher L.A., Mempel T., Schuerpf F., Carroll M.C. B cell acquisition of antigen in vivo. Curr. Opin. Immunol., 2009, vol. 21, pp. 251–257. doi: 10.1016/j.coi.2009.05.013
- Guo J., Hou L., Zhou J., Wang D., Cui Y., Feng X., Liu J. Porcine circovirus type 2 vaccines: commercial application and research advances. Viruses, 2022, vol. 14, no. 9: 2005. doi: 10.3390/v14092005
- Guo L., Tian J., Guo Z., Zheng B., Han S. The absence of immunoglobulin D B cell receptor-mediated signals promotes the production of autoantibodies and exacerbates glomerulonephritis in murine lupus. Clin. Exp. Immunol., 2011, vol. 164, pp. 227–235. doi: 10.1111/j.1365-2249.2011.04332.x
- Gupta N., Wollscheid B., Watts J.D., Scheer B., Aebersold R., DeFranco A.L. Quantitative proteomic analysis of B cell lipid rafts reveals that ezrin regulates antigen receptor-mediated lipid raft dynamics. Nat. Immunol., 2006, vol. 7, no. 6, pp. 625–633. doi: 10.1038/ni1337
- Hao S., August A. Actin depolymerization transduces the strength of B-cell receptor stimulation. Mol. Biol. Cell, 2005, vol. 16, no. 5, pp. 2275–2284. doi: 10.1091/mbc.e04-10-0881
- Haviv L., Brill-Karniely Y., Mahaffy R., Backouche F., Ben-Shaul A., Pollard T.D., Bernheim-Groswasser A. Reconstitution of the transition from lamellipodium to filopodium in a membrane-free system. Proc. Natl Acad. Sci. USA, 2006, vol. 103, pp. 4906–4911. doi: 10.1073/pnas.0508269103
- Hobeika E., Maity P.C., Jumaa H. Control of B cell responsiveness by isotype and structural elements of the antigen receptor. Trends Immunol., 2016, vol. 37, no. 5, pp. 310–320. doi: 10.1016/j.it.2016.03.004
- Hong J.J., Yankee T.M., Harrison M.L., Geahlen R.L. Regulation of signaling in B cells through the phosphorylation of Syk on linker region tyrosines. A mechanism for negative signaling by the Lyn tyrosine kinase. J. Biol. Chem., 2002, vol. 277, pp. 31703–31714. doi: 10.1074/jbc.M201362200
- Huang B., Babcock H., Zhuang X. Breaking the diffraction barrier: super-resolution imaging of cells. Cell, 2010, vol. 143, pp. 1047–1058. doi: 10.1016/j.cell.2010.12.002
- Huang L., Zhang Y., Xu C., Gu X., Niu L., Wang J., Sun X., Bai X., Xuan X., Li Q., Shi C., Yu B., Miller H., Yang G., Westerberg L.S., Liu W., Song W., Zhao X., Liu C. Rictor positively regulates B cell receptor signaling by modulating actin reorganization via ezrin. PLoS Biol., 2017, vol. 15: e2001750. doi: 10.1371/journal.pbio.2001750
- Ichetovkin I., Grant W., Condeelis J. Cofilin produces newly polymerized actin filaments that are preferred for dendritic nucleation by the Arp2/3 complex. Curr. Biol., 2002, vol. 12, pp. 79–84. doi: 10.1016/S0960-9822(01)00629-7
- Iwasaki A., Medzhitov R. Control of adaptive immunity by the innate immune system. Nat. Immunol., 2015, vol. 16, no. 4, pp. 343–353. doi: 10.1038/ni.3123
- Jacobson O., Weiss I.D. CXCR4 chemokine receptor overview: biology, pathology and applications in imaging and therapy. Theranostics, 2013, vol. 3, no. 1, pp. 1–2. doi: 10.7150/thno.5760
- Janeway C.A. Jr. Approaching the asymptote? Evolution and revolution in immunology. Cold Spring Harb. Symp. Quant. Biol., 1989, vol. 54, pt 1, pp. 1–13. doi: 10.1101/sqb.1989.054.01.003
- Jang C., Machtaler S., Matsuuchi L. The role of Ig-α/β in B cell antigen receptor internalization. Immunol. Lett., 2010, vol. 134, no. 1, pp. 75–82. doi: 10.1016/j.imlet.2010.09.001
- Karpova D., Bonig H. Concise review: CXCR4/CXCL12 signaling in immature hematopoiesis — lessons from pharmacological and genetic models. Stem Cells, 2015, vol. 33, pp. 2391–2399. doi: 10.1002/stem.2054
- Ketchum C., Miller H., Song W., Upadhyaya A. Ligand mobility regulates B cell receptor clustering and signaling activation. Biophys. J., 2014, vol. 106, pp. 26–36. doi: 10.1016/j.bpj.2013.10.043
- Ketchum C.M., Sun X., Suberi A., Fourkas J.T., Song W., Upadhyaya A. Subcellular topography modulates actin dynamics and signaling in B-cells. Mol. Biol. Cell., 2018, vol. 29, pp. 1732–1742. doi: 10.1091/mbc.E17-06-0422
- Kim Y.J., Sekiya F., Poulin B., Bae Y.S., Rhee S.G. Mechanism of B-cell receptor-induced phosphorylation and activation of phospholipase C-gamma2. Mol. Cell. Biol., 2004, vol. 24, pp. 9986–9999. doi: 10.1128/MCB.24.22.9986-9999.2004
- Klasener K., Maity P.C., Hobeika E., Yang J., Reth M. B cell activation involves nanoscale receptor reorganizations and inside-out signaling by Syk. Elife, 2014, vol. 3: e02069. doi: 10.7554/eLife.02069
- Klein J.S., Bjorkman P.J. Few and far between: how HIV may be evading antibody avidity. PLoS Pathog., 2010, vol. 6, no. 5: e1000908. doi: 10.1371/journal.ppat.1000908
- Koster D.V., Husain K., Iljazi E., Bhat A., Bieling P., Mullins R.D., Rao M., Mayor S. Actomyosin dynamics drive local membrane component organization in an in vitro active composite layer. Proc. Natl Acad. Sci. USA, 2016, vol. 113, no. 12, pp. 1645–1654. doi: 10.1073/pnas.1514030113
- Kurosaki T., Hikida M. Tyrosine kinases and their substrates in B lymphocytes. Immunol. Rev., 2009, vol. 228, pp. 132–148. doi: 10.1111/j.1600-065X.2008.00748.x
- Kurosaki T., Shinohara H., Baba Y. B cell signaling and fate decision. Ann. Rev. Immunol., 2010, vol. 28, pp. 21–55. doi: 10.1146/annurev.immunol.021908.132541
- Lee J., Sengupta P., Brzostowski J., Lippincott-Schwartz J., Pierce S.K. The nanoscale spatial organization of B-cell receptors on immunoglobulin M- and G-expressing human B-cells. Mol. Biol. Cell, 2017, vol. 28, pp. 511–523. doi: 10.1091/mbc.e16-06-0452
- Li J., Yin W., Jing Y., Kang D., Yang L., Cheng J., Yu Z., Peng Z., Li X., Wen Y., Sun X., Ren B., Liu C. The coordination between B Cell receptor signaling and the actin cytoskeleton during B cell activation. Front. Immunol., 2019, vol. 9: 3096. doi: 10.3389/fimmu.2018.03096
- Lillemeier B.F., Mörtelmaier M.A., Forstner M.B., Huppa J.B., Groves J.T., Davis M.M. TCR and Lat are expressed on separate protein islands on T cell membranes and concatenate during activation. Nat. Immunol., 2010, vol. 11, pp. 90–96. doi: 10.1038/ni.1832
- Liu C., Miller H., Hui K.L., Grooman B., Bolland S., Upadhyaya A., Song W. A balance of Bruton’s tyrosine kinase and SHIP activation regulates B cell receptor cluster formation by controlling actin remodeling. J. Immunol., 2011, vol. 187, pp. 230–239. doi: 10.4049/jimmunol.1100157
- Liu C., Miller H., Orlowski G., Hang H., Upadhyaya A., Song W. Actin reorganization is required for the formation of polarized B cell receptor signalosomes in response to both soluble and membrane-associated antigens. J. Immunol., 2012, vol. 188, pp. 3237–3246. doi: 10.4049/jimmunol.1103065
- Liu W., Meckel T., Tolar P., Sohn H.W., Pierce S.K. Antigen affinity discrimination is an intrinsic function of the B cell receptor. J. Exp. Med., 2010, vol. 207, pp. 1095–1111. doi: 10.1084/jem.20092123
- Lockey C., Young H., Brown J., Dixon A.M. Characterization of interactions within the Igα/Igβ transmembrane domains of the human B-cell receptor provides insights into receptor assembly. J. Biol. Chem., 2022, vol. 298, no. 5: 101843. doi: 10.1016/j.jbc.2022.101843
- Logue J.S., Cartagena-Rivera A.X., Baird M.A., Davidson M.W., Chadwick R.S., Waterman C.M. Erk regulation of actin capping and bundling by Eps8 promotes cortex tension and leader bleb-based migration. Elife, 2015, vol. 4: e08314. doi: 10.7554/eLife.08314
- Lu Y., Zhang Y., Pan M.H., Kim N.H., Sun S.C., Cui X.S. Daam1 regulates fascin for actin assembly in mouse oocyte meiosis. Cell Cycle, 2017, vol. 16, pp. 1350–1356. doi: 10.1080/15384101.2017.1325045
- Lutz C., Ledermann B., Kosco-Vilbois M.H., Ochsenbein A.F., Zinkernagel R.M., Kohler G., Brombacher F. IgD can largely substitute for loss of IgM function in B cells. Nature, 1998, vol. 393, pp. 797–801. doi: 10.1038/31716
- Maity P.C., Blount A., Jumaa H., Ronneberger O., Lillemeier B.F., Reth M. B cell antigen receptors of the IgM and IgD classes are clustered in different protein islands that are altered during B cell activation. Sci. Signal., 2015, vol. 8, no. 394: ra93. doi: 10.1126/scisignal.2005887
- Maity P.C., Datta M., Nicolò A., Jumaa H. Isotype specific assembly of B cell antigen receptors and synergism with chemokine receptor CXCR4. Front. Immunol., 2018, vol. 18, no. 9: 2988. doi: 10.3389/fimmu.2018.02988
- Maity P.C., Yang J., Klaesener K., Reth M. The nanoscale organization of the B lymphocyte membrane. Biochim. Biophys. Acta, 2015, vol. 1853, pp. 830–840. doi: 10.1016/j.bbamcr.2014.11.010
- Mattila P.K., Batista F.D., Treanor B. Dynamics of the actin cytoskeleton mediates receptor cross talk: an emerging concept in tuning receptor signaling. J. Cell Biol., 2016, vol. 212, pp. 267–280. doi: 10.1083/jcb.201504137
- Mattila P.K., Feest C., Depoil D., Treanor B., Montaner B., Otipoby K.L., Carter R., Justement L.B., Bruckbauer A., Batista F.D. The actin and tetraspanin networks organize receptor nanoclusters to regulate B cell receptor-mediated signaling. Immunity, 2013, vol. 38, pp. 461–474. doi: 10.1016/j.immuni.2012.11.019
- Mitchison N.A. T-cell-B-cell cooperation. Nat. Rev. Immunol., 2004, vol. 4, pp. 308–312. doi: 10.1038/nri1334
- Mohsen M.O., Bachmann M.F. Virus-like particle vaccinology, from bench to bedside. Cell. Mol. Immunol., 2022, vol. 19, pp. 993–1011. doi: 10.1038/s41423-022-00897-8
- Muller J., Obermeier I., Wohner M., Brandl C., Mrotzek S., Angermuller S., Maity P.C., Reth M., Nitschke L. CD22 ligand-binding and signaling domains reciprocally regulate B-cell Ca2+ signaling. Proc. Natl Acad. Sci. USA, 2013, vol. 110, pp. 12402–12407. doi: 10.1073/pnas.1304888110
- Nitschke L., Kosco M.H., Kohler G., Lamers M.C. Immunoglobulin D-deficient mice can mount normal immune responses to thymus-independent and -dependent antigens. Proc. Natl Acad. Sci. USA, 1993, vol. 90, pp. 1887–1891. doi: 10.1073/pnas.90.5.1887
- Nooraei S., Bahrulolum H., Hoseini Z.S., Katalani C., Hajizade A., Easton A.J., Ahmadian G. Virus-like particles: preparation, immunogenicity and their roles as nanovaccines and drug nanocarriers. J. Nanobiotechnology, 2021, vol. 19, no. 1: 59. doi: 10.1186/s12951-021-00806-7
- Noviski M., Mueller J.L., Satterthwaite A., Garrett-Sinha L.A., Brombacher F., Zikherman J. IgM and IgD B cell receptors differentially respond to endogenous antigens and control B cell fate. Elife, 2018, vol. 7: e35074. doi: 10.7554/eLife.35074
- Paluch E.K., Raz E. The role and regulation of blebs in cell migration. Curr. Opin. Cell. Biol., 2013, vol. 25, pp. 582–590. doi: 10.1016/j.ceb.2013.05.005
- Peng J., Wallar B.J., Flanders A., Swiatek P.J., Alberts A.S. Disruption of the diaphanous-related formin Drf1 gene encoding mDia1 reveals a role for Drf3 as an effector for Cdc42. Curr. Biol., 2003, vol. 13, pp. 534–545. doi: 10.1016/S0960-9822(03)00170-2
- Ponuwei G.A. A glimpse of the ERM proteins. J. Biomed. Sci., 2016, vol. 23: 35. doi: 10.1186/s12929-016-0246-3
- Rajewsky K. Clonal selection and learning in the antibody system. Nature, 1996, vol. 381, pp. 751–758. doi: 10.1038/381751a0
- Reth M. Antigen receptor tail clue. Nature, 1989, vol. 338, pp. 383–384. doi: 10.1038/338383b0
- Ricker E., Chowdhury L., Yi W., Pernis A.B. The RhoA-ROCK pathway in the regulation of T and B cell responses. F1000 Res., 2016, vol. 5: F1000. doi: 10.12688/f1000research.7522.1
- Roberts A.D., Davenport T.M., Dickey A.M., Ahn R., Sochacki K.A., Taraska J.W. Structurally distinct endocytic pathways for B cell receptors in B lymphocytes. Mol. Biol. Cell, 2020, vol. 31, no. 25, pp. 2826–2840. doi: 10.1091/mbc.E20-08-0532
- Roes J., Rajewsky K. Immunoglobulin D (IgD)-deficient mice reveal an auxiliary receptor function for IgD in antigen-mediated recruitment of B cells. J. Exp. Med., 1993, vol. 177, pp. 45–55. doi: 10.1084/jem.177.1.45
- Rolli V., Gallwitz M., Wossning T., Flemming A., Schamel W.W., Zurn C., Reth M. Amplification of B cell antigen receptor signaling by a Syk/ITAM positive feedback loop. Mol. Cell, 2002, vol. 10, no. 5, pp. 1057–1069. doi: 10.1016/s1097-2765(02)00739-6
- Roman-Garcia S., Merino-Cortes S.V., Gardeta S.R., de Bruijn J.W., Hendriks R.W., Carrasco Y.R. Distinct roles for bruton’s tyrosine kinase in b cell immune synapse formation. Front. Immunol., 2018, vol. 9: 2027. doi: 10.3389/fimmu.2018.02027
- Rostam H.M., Singh S., Vrana N.E., Alexander M.R., Ghaemmaghami A.M. Impact of surface chemistry and topography on the function of antigen presenting cells. Biomater. Sci., 2015, vol. 3, pp. 424–441. doi: 10.1039/C4BM00375F
- Schnyder T., Castello A., Feest C., Harwood N.E., Oellerich T., Urlaub H., Engelke M., Wienands J., Bruckbauer A., Batista F.D. B cell receptor-mediated antigen gathering requires ubiquitin ligase Cbl and adaptors Grb2 and Dok-3 to recruit dynein to the signaling microcluster. Immunity, 2011, vol. 34, pp. 905–918. doi: 10.1016/j.immuni.2011.06.001
- Sohn H.W., Tolar P., Pierce S.K. Membrane heterogeneities in the formation of B cell receptor-Lyn kinase microclusters and the immune synapse. J. Cell Biol., 2008, vol. 182, pp. 367–379. doi: 10.1083/jcb.200802007
- Song W., Liu C., Upadhyaya A. The pivotal position of the actin cytoskeleton in the initiation and regulation of B cell receptor activation. Biochim. Biophys. Acta, 2014, vol. 1838, pp. 569–578. doi: 10.1016/j.bbamem.2013.07.016
- Suzuki K., Ritchie K., Kajikawa E., Fujiwara T., Kusumi A. Rapid hop diffusion of a G-protein-coupled receptor in the plasma membrane as revealed by single-molecule techniques. Biophys. J., 2005, vol. 88, pp. 3659–3680. doi: 10.1529/biophysj.104.048538
- Tolar P., Hanna J., Krueger P.D., Pierce S.K. The constant region of the membrane immunoglobulin mediates B cell-receptor clustering and signaling in response to membrane antigens. Immunity, 2009, vol. 30, pp. 44–55. doi: 10.1016/j.immuni.2008.11.007
- Tolar P., Pierce S.K. A conformation-induced oligomerization model for B cell receptor microclustering and signaling. Curr. Top. Microbiol. Immunol., 2010, vol. 340, pp. 155–169. doi: 10.1007/978-3-642-03858-7_8
- Tolar P., Sohn H.W., Pierce S.K. The initiation of antigen-induced B cell antigen receptor signaling viewed in living cells by fluorescence resonance energy transfer. Nat. Immunol., 2005, vol. 6, pp. 1168–1176. doi: 10.1038/ni1262
- Tolar P. Cytoskeletal control of B cell responses to antigens. Nat. Rev. Immunol., 2017, vol. 17, pp. 621–634. doi: 10.1038/nri.2017.67
- Torres M., May R., Scharff M.D., Casadevall A. Variable-region-identical antibodies differing in isotype demonstrate differences in fine specificity and idiotype. J. Immunol., 2005, vol. 174, pp. 2132–2142. doi: 10.4049/jimmunol.174.4.2132
- Treanor B., Depoil D., Bruckbauer A., Batista F.D. Dynamic cortical actin remodeling by ERM proteins controls BCR microcluster organization and integrity. J. Exp. Med., 2011, vol. 208, pp. 1055–1068. doi: 10.1084/jem.20101125
- Treanor B., Depoil D., Gonzalez-Granja A., Barral P., Weber M., Dushek O., Bruckbauer A., Batista F.D. The membrane skeleton controls diffusion dynamics and signaling through the B cell receptor. Immunity, 2010, vol. 32, pp. 187–199. doi: 10.1016/j.immuni.2009.12.005
- Tudor D., Yu H., Maupetit J., Drillet A.S., Bouceba T., Schwartz-Cornil I., Lopalco L., Tuffery P., Bomsel M. Isotype modulates epitope specificity, affinity, and antiviral activities of anti-HIV-1 human broadly neutralizing 2F5 antibody. Proc. Natl Acad. Sci. USA, 2012, vol. 109, pp. 12680–12685. doi: 10.1073/pnas.1200024109
- Übelhart R., Hug E., Bach M.P., Wossning T., Duhren-von Minden M., Horn A.H., Tsiantoulas D., Kometani K., Kurosaki T., Binder C.J., Sticht H., Nitschke L., Reth M., Jumaa H. Responsiveness of B cells is regulated by the hinge region of IgD. Nat. Immunol., 2015, vol. 16, pp. 534–543. doi: 10.1038/ni.3141
- Van Zelm M.C., Smet J., Adams B., Mascart F., Schandene L., Janssen F., Ferster A., Kuo C., Levy S., van Dongen J.J.M., van der Burg M. CD81 gene defect in humans disrupts CD19 complex formation and leads to antibody deficiency. J. Clin. Invest., 2010, vol. 120, pp. 1265–1274. doi: 10.1172/JCI39748
- Venkitaraman A.R., Williams G.T., Dariavach P., Neuberger M.S. The B-cell antigen receptor of the five immunoglobulin classes. Nature, 1991, vol. 352, pp. 777–781. doi: 10.1038/352777a0
- Volkmann C., Brings N., Becker M., Hobeika E., Yang J. Molecular requirements of the B-cell antigen receptor for sensing monovalent antigens. EMBO J., 2016, vol. 35, pp. 2371–2381. doi: 10.15252/embj.201694177
- Wang J.C., Bolger-Munro M., Gold M.R. Visualizing the actin and microtubule cytoskeletons at the B-cell immune synapse using stimulated emission depletion (STED) microscopy. J. Visual Exp., 2018, vol. 134: 57028. doi: 10.3791/57028
- Wasim L., Treanor B. Single-particle tracking of cell surface proteins. Methods Mol. Biol., 2018, vol. 1707, pp. 183–192. doi: 10.1007/978-1-4939-7474-0_13
- Weber M., Treanor B., Depoil D., Shinohara H., Harwood N.E., Hikida M., Kurosaki T., Batista F.D. Phospholipase C-gamma2 and Vav cooperate within signaling microclusters to propagate B cell spreading in response to membrane-bound antigen. J. Exp. Med., 2008, vol. 205, pp. 853–868. doi: 10.1084/jem.20072619
- Weiss A., Littman D.R. Signal transduction by lymphocyte antigen receptors. Cell, 1994, vol. 76, pp. 263–274. doi: 10.1016/0092-8674(94)90334-4
- Welch M.D., DePace A.H., Verma S., Iwamatsu A., Mitchison T.J. The human Arp2/3 complex is composed of evolutionarily conserved subunits and is localized to cellular regions of dynamic actin filament assembly. J. Cell Biol., 1997, vol. 138, pp. 375–384. doi: 10.1083/jcb.138.2.375
- Yang J., Reth M. Oligomeric organization of the B-cell antigen receptor on resting cells. Nature, 2010, vol. 467, no. 7314, pp. 465–469. doi: 10.1038/nature09357
- Yang J., Reth M. The dissociation activation model of B cell antigen receptor triggering. FEBS Lett., 2010, vol. 584, pp. 4872–4877. doi: 10.1016/j.febslet.2010.09.045
- Zepeda-Cervantes J., Ramírez-Jarquín J.O., Vaca L. Interaction between virus-like particles (VLPs) and pattern recognition receptors (PRRs) from dendritic cells (DCs): toward better engineering of VLPs. Front. Immunol., 2020, vol. 11: 1100. doi: 10.3389/fimmu.2020.01100
Дополнительные файлы
