Risk assessment of first-line treatment failure in untreated HIV patients in Northwestern Federal District of the Russian Federation

Cover Page

Cite item

Full Text

Abstract

The HIV infection epidemic in Russia continues to evolve, and HIV infection cases have been registered in all territorial entities of the Russian Federation. 2021 Treatment coverage was 82.2% and 56.4% individuals under dispensary observation and living with diagnosed HIV infection. 79.9% receiving ART subjects were shown to achieve undetectable viral load. Highly active antiretroviral therapy (HAART) currently represents a combination of three (less frequently four) antiretroviral drugs targeting pathways involved in various stages of HIV replication in vivo. Treatment failure is a problem facing doctors and patients using HAART. The most common cause of therapeutic failure is the development of HIV drug resistance. The emergence of resistance is associated with processes involving mutation occurring in the viral genome influenced by evolutionary factors. Therefore, it is important clinically and programmatically to learn more about the rate of first-line treatment failure, the rate of switching to a second-line ART regimen, and to identify patients at risk to develop strategies for preventing development of further failure cases. The study was aimed at analyzing ineffectiveness of first-line ART therapy in patients in Northwestern Federal District of the Russian Federation. Materials and methods. Sequencing reactions were performed using the AmpliSens HIV Resist-Seq. Assembly of consensus sequences from fragments obtained during sequencing was carried out using Unipro UGENE software. Isolate genotyping was performed using the MEGA-X software with the Neighbor-joining algorithm. Results. The HIV pol genes in 239 patients with first-line ART failure and 100 naïve patients were sequenced; all sequences genotyped as HIV-1 subsubtype A6. According to analysis, 82% of patients had at least one significant mutation associated with drug resistance for the corresponding viral subtype. In total, we encountered 87 different drug resistance mutations. Conclusion. We have shown increased proportion of patients with first-line ART failure among all patients with treatment failure. The main cause for such changes is probably related to the prevalence of primary drug resistance, estimated here at 8%. Specific differences were found between drug resistance mutation profiles in patients without suppressed viral load and patients with virological breakthrough. The overall results of the study indicate a need to diagnose and characterize HIV drug resistance prior to initiation of therapy in order to avoid ineffective first-line antiretroviral treatment.

About the authors

Alexandr N. Shchemelev

St. Petersburg Pasteur Institute

Author for correspondence.
Email: tvildorm@gmail.com

Junior Researcher, Laboratory of Virology and Immunology of HIV Infection

Russian Federation, St. Petersburg

Yulia V. Ostankova

St. Petersburg Pasteur Institute

Email: tvildorm@gmail.com

PhD (Medicine), Senior Researcher, Laboratory of Molecular Immunology

Russian Federation, St. Petersburg

Diana E. Valutite

St. Petersburg Pasteur Institute

Email: tvildorm@gmail.com

Clinical Laboratory Diagnostics Doctor, Department of Diagnostics of HIV Infection and AIDS-associated Diseases

Russian Federation, St. Petersburg

Elena N. Serikova

St. Petersburg Pasteur Institute

Email: tvildorm@gmail.com

Researcher, Laboratory of Virology and Immunology of HIV Infection

Russian Federation, St. Petersburg

Elena B. Zueva

St. Petersburg Pasteur Institute

Email: tvildorm@gmail.com

PhD (Biology), Biologist, Department of Diagnostics of HIV Infection and AIDS-associated Diseases

Russian Federation, St. Petersburg

Alexandr V. Semenov

Federal Research Institute of Viral Infections “Virome” of Rospotrebnadzor

Email: tvildorm@gmail.com

DSc (Biology), Director

Russian Federation, Ekaterinburg

Areg A. Totolian

St. Petersburg Pasteur Institute

Email: tvildorm@gmail.com

RAS Full Member, DSc (Medicine), Professor, Director

Russian Federation, St. Petersburg

References

  1. Bartlett J.A. Addressing the challenges of adherence. J. Acquir. Immune Defic. Syndr., 2002, vol. 29, suppl. 1, pp. S2–S10. doi: 10.1097/00126334-200202011-00002
  2. Brenner B., Wainberg M.A., Salomon H., Rouleau D., Dascal A., Spira B., Sekaly R.P., Conway B., Routy J.P. Resistance to antiretroviral drugs in patients with primary HIV-1 infection. Investigators of the Quebec Primary Infection Study. Int. J. Antimicrob. Agents, 2000, vol. 16, no. 4, pp. 429–434. doi: 10.1016/s0924-8579(00)00270-3
  3. Bunnell R., Ekwaru J.P., Solberg P., Wamai N., Bikaako-Kajura W., Were W., Coutinho A., Liechty C., Madraa E., Rutherford G., Mermin J. Changes in sexual behavior and risk of HIV transmission after antiretroviral therapy and prevention interventions in rural Uganda. AIDS, 2006, vol. 20, no. 1, pp. 85–92. doi: 10.1097/01.aids.0000196566.40702.28
  4. D’Aquila R.T., Schapiro J.M., Brun-Vezinet F., Clotet B., Conway B., Demeter L.M., Grant R.M., Johnson V.A., Kuritzkes D.R., Loveday C. Drug resistance mutations in HIV-1. Top. HIV Med., 2003, no. 11, pp. 92–96.
  5. Dapp M.J., Heineman R.H., Mansky L.M. Interrelationship between HIV-1 fitness and mutation rate. J. Mol. Biol., 2013, vol. 425, no. 1, pp. 41–53. doi: 10.1016/j.jmb.2012.10.009
  6. Fact sheets. HIV infection in the Russian Federation as of December 31, 2020. URL: http://www.hivrussia.info/wp-content/uploads/2021/03/VICH-infektsiya-v-Rossijskoj-Federatsii-na-31.12.2020-.pdf (In Russ.)
  7. Fact sheets. HIV infection in the Russian Federation as of December 31, 2021. URL: http://www.hivrussia.info/wp-content/uploads/2022/03/Spravka-VICH-v-Rossii-na-31.12.2021-g.pdf (In Russ.)
  8. Golosova O., Henderson R., Vaskin Y., Gabrielian A., Grekhov G., Nagarajan V., Oler A.J., Quiñones M., Hurt D., Fursov M., Huyen Y. Unipro UGENE NGS pipelines and components for variant calling, RNA-seq and ChIP-seq data analyses. Peer J., 2014, no. 2: e644. doi: 10.7717/peerj.644
  9. Günthard H.F., Calvez V., Paredes R., Pillay D., Shafer R.W., Wensing A.M., Jacobsen D.M., Richman D.D. Human Immunodeficiency Virus Drug Resistance: 2018 Recommendations of the International Antiviral Society-USA Panel. Clin. Infect. Dis., 2019, vol. 68, no. 2, pp. 177–187. doi: 10.1093/cid/ciy463
  10. Hammer S.M., Squires K.E., Hughes M.D., Grimes J.M., Demeter L.M., Currier J.S., Eron J.J., Feinberg J.E., Balfour H.H., Deyton L.R., Chodakewitz J.A., Fischl M.A., for the AIDS clinical trials group 320 study team A controlled trial of two nucleoside analogues plus indinavir in persons with human immunodeficiency virus infection and CD4 cell counts of 200 per cubic millimeter or less. N. Engl. J. Med., 1997, vol. 337, no. 11, pp. 725–733. doi: 10.1056/NEJM199709113371101
  11. Hogg R.S., Yip B., Kully C., Craib K.J., O’Shaughnessy M.V., Schechter M.T., Montaner J.S. Improved survival among HIV-infected patients after initiation of triple-drug antiretroviral regimens. CMAJ, 1999, vol. 160, no. 5, pp. 659–665
  12. Iacob S.A., Iacob D.G., Jugulete G. Improving the adherence to antiretroviral therapy, a difficult but essential task for a successful HIV treatment-clinical points of view and practical considerations. Front. Pharmacol., 2017, no. 8: 831. doi: 10.3389/fphar.2017.00831
  13. Larder B.A., Darby G., Richman D.D. HIV with reduced sensitivity to zidovudine (AZT) isolated during prolonged therapy. Science. 1989, vol. 243, no. 4899, pp. 1731–1734. doi: 10.1126/science.2467383
  14. Larder B.A., Kemp S.D. Multiple mutations in HIV-1 reverse transcriptase confer high-level resistance to zidovudine (AZT). Science. 1989, vol. 246, no. 4934, pp. 1155–1158. doi: 10.1126/science.2479983
  15. Lee F.J., Amin J., Carr A. Efficacy of initial antiretroviral therapy for HIV-1 infection in adults: a systematic review and meta-analysis of 114 studies with up to 144 weeks’ follow-up. PLoS One, 2014, no. 9: e97482. doi: 10.1371/journal.pone.0097482
  16. Level and structure of HIV drug resistance among naive patients in the Russian Federation. URL: http://www.hivrussia.info/wp-content/uploads/2020/12/2020-Rossijskaya-baza-dannyh-LU-VICH-u-naivnyh-patsientov.pdf (In Russ.)
  17. Louie M., Hogan C., Di Mascio M., Hurley A., Simon V., Rooney J., Ruiz N., Brun S., Sun E., Perelson A.S., Determining the relative efficacy of highly active antiretroviral therapy. J. Infect. Dis. 2003, vol. 187, no. 6, pp. 896–900. doi: 10.1086/368164
  18. Lucas S., Nelson A.M. HIV and the spectrum of human disease. J. Pathol., 2015, vol. 235, no. 2, pp. 229–241. doi: 10.1002/path.4449
  19. Maksimenko L.V., Totmenin A.V., Gashnikova M.P., Astakhova E.M., Skudarnov S.E., Ostapova T.S., Yaschenko S.V., Meshkov I.O., Bocharov E.F., Maksyutov R.А., Gashnikova N.M. Genetic Diversity of HIV-1 in Krasnoyarsk Krai: Area with High Levels of HIV-1 Recombination in Russia. Biomed. Res. Int., 2020, vol. 2020: 9057541. doi: 10.1155/2020/9057541
  20. Maldonado J.O., Mansky L.M. The HIV-1 Reverse Transcriptase A62V Mutation Influences Replication Fidelity and Viral Fitness in the Context of Multi-Drug-Resistant Mutations. Viruses., 2018, vol. 10, no. 7: 376. doi: 10.3390/v10070376
  21. Nachega J.B., Marconi V.C., van Zyl G.U., Gardner E.M., Preiser W., Hong S.Y., Mills E.J., Gross R. HIV treatment adherence, drug resistance, virologic failure: evolving concepts. Infect. Disord. Drug Targets, 2011, vol. 11, no. 2, pp. 167–174. doi: 10.2174/187152611795589663
  22. Okonechnikov K., Golosova O., Fursov M., the UGENE team. Unipro UGENE: a unified bioinformatics toolkit. Bioinformatics, 2012, vol. 28, no. 8, pp. 1166–1167. doi: 10.1093/bioinformatics/bts091
  23. Pineda-Peña A.C., Faria N.R., Imbrechts S., Libin P., Abecasis A.B., Deforche K., Gómez-López A., Camacho R.J., de Oliveira T., Vandamme A.M. Automated subtyping of HIV-1 genetic sequences for clinical and surveillance purposes: performance evaluation of the new REGA version 3 and seven other tools. Infect. Genet. Evol., 2013, vol. 19, pp. 337–348. doi: 10.1016/ j.meegid.2013.04.032
  24. Rocheleau G., Brumme C.J., Shoveller J., Lima V.D., Harrigan P.R. Longitudinal trends of HIV drug resistance in a large canadian cohort, 1996–2016. Clin. Microbiol. Infect., 2018, vol. 24, no. 2, pp. 185–191. doi: 10.1016/j.cmi.2017.06.014
  25. Rose R., Golosova O., Sukhomlinov D., Tiunov A., Prosperi M. Flexible design of multiple metagenomics classification pipelines with UGENE. Bioinformatics., 2019, vol. 35, no. 11, pp. 1963–1965. doi: 10.1093/bioinformatics/bty901
  26. Schemelev A.N., Ostankova Yu.V., Zueva E.B., Khanh T.H., Semenov A.V. Genotypic and pharmacoresistant HIV characteristics in patients in the Socialist Republic of Vietnam. HIV Infection and Immunosuppressive Disorders 2020, vol. 12, no. 2, pp. 56–68. doi: 10.22328/2077-9828-2020-12-2-56-68
  27. Schuurman R., Nijhuis M., van Leeuwen R., Schipper P., de Jong D., Collis P., Danner S.A., Mulder J., Loveday C., Christopherson C. Rapid changes in human immunodeficiency virus type 1 RNA load and appearance of drug-resistant virus populations in persons treated with lamivudine (3TC). J. Infect. Dis., 1995, vol. 171, no. 6, pp. 1411–1419. doi: 10.1093/infdis/171.6.1411
  28. Shafer R.W., Kozal M.J., Winters M.A., Iversen A.K.N., Katzenstein D.A., Ragni M.V., Meyer W.A., Gupta P., Rasheed S., Coombs R., Katzman M., Fiscus S., Merigan T.C. Combination therapy with zidovudine and didanosine selects for drug-resistant human immunodeficiency virus type 1 strains with unique patterns of pol gene mutations. J. Infect. Dis., 1994, vol. 169, no. 4, pp. 722–729. doi: 10.1093/infdis/169.4.722
  29. Shchemelev A.N., Semenov A.V., Ostankova Yu.V., Zueva E.B., Valutite D.E., Semenova D.A., Davydenko V.S., Totolian A.A. Genetic diversity and drug resistance mutations of HIV-1 in Leningrad Region. Journal of Microbiology, Epidemiology and Immunobiology, 2022, vol. 99, no. 1, pp. 28–37. doi: 10.36233/0372-9311-216 (In Russ.)
  30. Shirasaka T., Kavlick M.F., Ueno T., Gao W.Y., Kojima E., Alcaide M.L., Chokekijchai S., Roy B.M., Arnold E., Yarchoan R. Emergence of human immunodeficiency virus type 1 variants with resistance to multiple dideoxynucleosides in patients receiving therapy with dideoxynucleosides. Proc. Natl Acad. Sci. USA, 1995, vol. 92, pp. 2398–2402. doi: 10.1073/pnas.92.6.2398
  31. Soo-Yon Rhee, Matthew J. Gonzales, Rami Kantor, Bradley J. Betts, Jaideep Ravela, and Robert W. Shafer Human immunodeficiency virus reverse transcriptase and protease sequence database. Nucl. Acids Res., 2003, vol. 31, no. 1, pp. 298–303 doi: 10.1093/nar/gkg100
  32. UNAIDS DATA 2017. Geneva, Switzerland: Joint United Nations Programme on HIV/AIDS; 2017. URL: https://www.unaids.org/sites/default/files/media_asset/20170720_Data_book_2017_en.pdf
  33. UNAIDS data 2020. URL: https://www.unaids.org/en/resources/documents/2020/unaids-data
  34. UNAIDS data, 2017. URL: https://www.unaids.org/en/resources/documents/2017/2017_data_book
  35. Walensky R.P., Paltiel A.D., Losina E., Mercincavage L.M., Schackman B.R., Sax P.E., Weinstein M.C., Freedberg K.A. The survival benefits of AIDS treatment in the united states. J. Infec.t Dis., 2006, vol. 194, no. 1, pp. 11–19. doi: 10.1086/505147
  36. Walsh J.C., Pozniak A.L., Nelson M.R., Mandalia S., Gazzard B.G. Virologic rebound on HAART in the context of low treatment adherence is associated with a low prevalence of antiretroviral drug resistance. J. Acquir. Immune Defic. Syndr., 2002, vol. 30, no. 3, pp. 278–287. doi: 10.1097/00126334-200207010-00003

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Figure 1. 2014–2018 proportion of patients with first-line ART failure

Download (35KB)
3. Figure 2. Heterogeneity in distribution of drug resistance mutations in patients with first-line ART failure

Download (97KB)

Copyright (c) 2023 Shchemelev A.N., Ostankova Y.V., Valutite D.E., Serikova E.N., Zueva E.B., Semenov A.V., Totolian A.A.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».