Malignant human thyroid neoplasms associated with blood parasitic (haemosporidian) infection

Cover Page

Cite item

Full Text

Abstract

A retrospective investigation of archival cytology specimens obtained and verified by a fine-needle aspiration biopsy from patients with follicular, papillary, and medullary human thyroid cancers revealed haemosporidian (blood parasitic) infection in thyrocytes (schizogony) and erythrocytes. The exoerythrocytic stage of infection is represented by finding microschizonts. Cytologic material was stained with Romanowsky–Giemsa dye in medical laboratories. Original specimens were stained (re-stained) with Schiff reagent according to the Feulgen method to clarify location of thyrocyte DNA and hemosporidian pathogens, wherein fuchsine was incorporated into DNA molecules after they were hydrolyzed by hydrochloric acid to stain specimens into red-violet color. An intentionally unstained hemosporidian protoplasm during blood parasitic infection was observed as a light band around erythrocyte nuclei. In follicular thyroid cancer, thyrocyte Feulgen staining revealed nuclear DNA and parasitic DNA (haemosporidium nuclei) as punctate inclusions and rings diffusely distributed in the thyrocyte cytoplasm. The thyrocyte cytoplasm and nuclei were vacuolated, with thyrocyte nuclei being deformed, flattened, and displaced to the cell periphery. The erythrocytes contained haemosporidian nuclei (DNA). In papillary thyroid cancer, we were able to localize the nuclear DNA of thyrocytes and the parasitic DNA as punctate inclusions diffusely distributed in the thyrocyte cytoplasm. Two or more polymorphic nuclei may be positioned eccentrically in the hyperplastic cytoplasm. Haemosporidian microschizonts were found circumnuclearly in thyrocytes as well as an exoerythrocytic stage in the blood. In medullary thyroid cancer, the hyperplastic cytoplasm of thyrocytes contained eccentrically located nuclei (DNA) of thyrocytes and small haemosporidian nuclei (DNA), which may occupy the whole thyrocyte. There were thyrocytes with vacuolated cytoplasm and prominent nuclear polymorphism. The size of hyperplastic nuclei was several times larger than that of normal thyrocyte nuclei. The color of stained thyrocyte cytoplasmic and nuclear vacuoles was less red-violet compared with that of surrounding tissues, which potentially indicates the presence of parasitic DNA inside them. The intra-erythrocyte nuclear haemosporidian material of varying sizes in papillary and medullary cancers may evidence about various species and/or pathogen generation. Intracellular parasitism of haemosporidian infection in thyrocytes (schizogony) associated with three thyroid cancer types leads to marked thyrocyte cytoplasmic hyperplasia, cytoplasmic vacuolization, and nuclear vacuolization. Multinucleated thyrocytes with incomplete cytokinesis emerge. Nuclear deformation occurs, which leads to decreased nucleus size, flattening and displacement to the cell periphery, with high risk of DNA mutations and deletions in affected cells, reaching a neoplastic level.

About the authors

Alexander Terletsky

Institute of Molecular and Cellular Biology of the Siberian Branch of the Russian Academy of Sciences

Author for correspondence.
Email: terletsky@mcb.nsc.ru

PhD (Biology), Researcher, Laboratory of Molecular Genetics

Russian Federation, Novosibirsk

Larisa G. Akhmerova

Institute of Molecular and Cellular Biology of the Siberian Branch of the Russian Academy of Sciences

Email: terletsky@mcb.nsc.ru

PhD (Biology), Scientific Secretary
Russian Federation, Novosibirsk

References

  1. Волченко Н.Н., Славнова Е.Н. Цитологические критерии диагностики рака щитовидной железы // Сибирский онкологический журнал. 2006. № 3 (19). C. 5–7. [Volchenko N.N., Slavnova E.N. Cytological criteria for the diagnosis of thyroid cancer. Sibirskii onkologicheskii zhurnal = Siberian Journal of Oncology, 2006, no. 3 (19), pp. 5–7. (In Russ.)]
  2. Засухин Д.Н., Дьяконов Л.П., Красильников Е.Н. Систематическое положение токсоплазмид, гемоспоридий и пироплазмид // Ветеринария. 1975. № 2. С. 71–74. [Zasukhin D.N., Dyakonov L.P., Krasilnikov E.N. Systematic position of toxoplasmids, hemosporidias and pyroplasmids. Veterinariya = Veterinary Medicine, 1975, no. 2, pp. 71–74. (In Russ.)]
  3. Карташов С.Н., Ермаков А.М., Ключников А.Г., Миронова Л.П., Миронова А.А., Ярошенко Н.В., Бойко В.П. Бабезиоз собак: новые экологические, молекулярно-генетические и клинико-лабораторные аспекты // Ветеринария Кубани. 2010. № 5. C. 22–24. [Kartashov S.N., Ermakov A.M., Klyuchnikov A.G., Mironova L.P., Mironova A.A., Yaroshenko N.V., Boyko V.P. Babesiosis of dogs: new ecological, molecular genetic and clinical and laboratory aspects. Veterinariya Kubani = Veterinary of Kuban, 2010, no. 5, pp. 22–24. (In Russ.)]
  4. Колабский Н.А. О развитии гемоспоридий сем. Piroplasmidae в организме позвоночных животных // Сб. тр. Ленинградского Ветеринарного института. 1954. Вып. XIV. С. 9–24. [Kolabsky N.A. On the development of hemosporidia of the family Piroplasmidae in the body of vertebrates. Proceedings of Leningrad Veterinary Institute, 1954, iss. XIV, pp. 9–24. (In Russ.)]
  5. Крылов М.В. Пироплазмиды. Л.: Наука, 1981. 230 c. [Krylov M.V. Pyroplasmids. Leningrad: Nauka, 1981, 230 p. (In Russ.)]
  6. Лабораторная диагностика заболеваний щитовидной железы. Иммунохимические, иммуноцитохимические, молекулярно-генетические исследования, атлас традиционной и жидкостной цитологии, клиническая интерпретация лабораторных данных. Под. ред. В.В. Долгова, И.П. Шабаловой, А.В. Селивановой. М., СПб., Новосибирск, Тверь: ООО «Издательство «Триада», 2022. 288 с. [Laboratory diagnosis of thyroid diseases. Immunochemical, immunocytochemical, molecular genetic studies, atlas of traditional and liquid cytology, clinical interpretation of laboratory data. Ed. V.V. Dolgova, I.P. Shabalova, A.V. Selivanova. Moscow, St. Petersburg, Novosibirsk, Tver: Triada Publishing House LLC, 2022. 288 p. (In Russ.)]
  7. Либерман Е.Л., Силиванова Е.А., Георгию Х. Эпизоотология анаплазмоза и бабезиоза северного оленя в Тюменской области // Вестник Тюменского государственного университета. 2012. № 6. С. 25–30. [Liberman E.L., Silivanova E.A., Georgy H. Epizootology of anaplasmosis and babesiosis of reindeer in the Tyumen region. Vestnik Tyumenskogo gosudarstvennogo universiteta = Bulletin of the Tyumen State University, 2012, no. 6, pp. 25–30. (In Russ.)]
  8. Орлов Н.П. Биологические основы лечения и профилактики паразитарных заболеваний. М.: Сельхозгиз, 1961. 159 с. [Orlov N.P. Biological basis for the treatment and prevention of parasitic diseases. Moscow: Selkhozgiz, 1961. 159 p. (In Russ.)]
  9. Петров Н.Н. Спорное в учении об этиологии опухолей // Бюллетень экспериментальной биологии и медицины. 1954. Т. XXXVII. С. 65–72. [Petrov N.N. Controversial in the doctrine of the etiology of tumors. Byulleten’ eksperimental’noi biologii i meditsiny = Bulletin of Experimental Biology and Medicine, 1954, vol. XXXVII, pp. 65–72. (In Russ.)]
  10. Полоз Т.Л., Шевченко С.П. Проблемы цитологической диагностики фолликулярных опухолей щитовидной железы // Сибирский онкологический журнал. 2011. № 6 (48). С. 62–65. [Poloz T.L., Shevchenko S.P. Cytological problems diagnostics of follicular tumors of the thyroid gland. Sibirskii onkologicheskii zhurnal = Siberian Journal of Oncology, 2011, no. 6 (48), pp. 62–65. (In Russ.)]
  11. Поляков В.А. Кровососущие двукрылые насекомые как переносчики патогенных микроорганизмов // Труды ВНИИВС. М., 1973. Т. XLV, С. 273–286. [Polyakov V.A. Blood-sucking Diptera insects as carriers of pathogenic microorganisms. Proceedings of All-Union Research Institute of Veterinary Sanitation. Moscow, 1973, vol. XLV, pp. 273–286. (In Russ.)]
  12. Рар В.А., Марченко В.А., Ефремова Е.А., Сунцова О.В., Лисак О.В., Тикунов А.Ю., Мельцов И.В., Тикунова Н.В. Идентификация и генетическая характеризация этиологического агента пироплазмидоза лошадей на территории Западной и Восточной Сибири // Вавиловский журнал генетики и селекции. 2018. Т. 22, № 2. С. 224–229. [Rar V.A., Marchenko V.A., Efremova E.A., Suntsova O.V., Lisak O.V., Tikunov A.Yu., Meltsov I.V., Tikunova N.V. Identification and genetic characterization of the etiological agent of piroplasmidosis in horses in Western and Eastern Siberia. Vavilovskii zhurnal genetiki i selektsii = Vavilov Journal of Genetics and Breeding, 2018, vol. 22, no. 2, pp. 224–229. (In Russ.)]. doi: 10.18699/VJ18.351
  13. Свердлов Е.Д. Взгляд на жизнь через окно генома: В 3 т. М.: Наука, 2009. Т. 2: Очерки современной молекулярной генетики. 2019. 495 с. [Sverdlov E.D. A look at life through the window of the genome: In 3 volumes. Moscow: Nauka, 2009. Vol. 2: Essays on modern molecular genetics. 2019. 495 p. (In Russ.)]
  14. Симоварт Ю., Пракс Я. Картина крови при лейкозе и бабезиозе крупного рогатого скота // Гематология и лейкозы сельскохозяйственных животных: материалы докл. Всесоюзн. науч.-практ. конф. терапевтов и диагностов, посвященной 100-летию профессора Н.П. Рухлядева. Казань, 1969. Т. 1. С. 105–107. [Simovart Y., Prax Y. Blood picture in leukemia and babesiosis in cattle. Hematology and leukemia of agricultural animals: materials of the reports of the All-Union scientific-practical conference of therapists and diagnosticians, dedicated to the 100th anniversary of Professor N.P. Rukhlyadev. Kazan, 1969, vol. 1, pp. 105–107. (In Russ.)]
  15. Степанова Н.И., Казаков Н.А., Заблоцкий В.Т., Петровский В.В., Абрамов И.В., Вершинин И.И., Хван М.В., Манжос А.Ф. Протозойные болезни сельскохозяйственных животных. М.: Колос, 1982. 352 с. [Stepanova N.I.,. Kazakov N.A., Zablotskiy V.T., V.V. Petrovsky, I.V. Abramov, I.I. Vershinin, M.V. Khwan, A.F. Manzhos. Protozoal diseases of farm animals. Moscow: Kolos, 1982. 352 p. (In Russ.)]
  16. Таурбаева С.Н., Токпан С.С., Шевцов А.Б., Лидер Л.А. Тейлериоз крупного рогатого скота: распространение и диагностика в условиях Кызылординской области // Вестник науки Казахского агротехнического университета им. С. Сейфулина. Астана, 2017. С. 73–78. [Taurbaeva S.N., Tokpan S.S., Shevtsov A.B., Leader L.A. Cattle Theileriosis: distribution and diagnosis in the conditions of the Kyzylorda region. Herald of the Kazakh Agro-Technical University. S. Seyfulina. Astana, 2017, pp. 73–78. (In Russ.)]
  17. Терентьев Ф.А., Марков А.А., Полыковский М.Д. Болезни овец. М., 1963. 520 c. [Terentyev F.A., Markov A.A., Polykovsky M.D. Diseases of sheep. Moscow, 1963. 520 p. (In Russ.)]
  18. Терлецкий А.В., Ахмерова Л.Г., Евтушенко Е.В. Кровепаразитарная инфекция как причина возникновения воспалительных реакций и доброкачественных образований щитовидной железы человека // Инфекция и иммунитет. 2019. Т. 9, № 1. C. 155–161. [Terletsky A.V., Akhmerova L.G., Evtushenko E.V. Blood parasite infection causing inflammatory reaction and benign formations in human thyroid gland. Infektsiya i immunitet = Russian Journal of Infection and Immunity, 2019, vol. 9, no. 1, pp. 155–161. (In Russ.)]. doi: 10.15789/2220-7619-2019-1-155-161
  19. Трофимов И.Т. Протозойные болезни сельскохозяйственных животных (гемоспоридиозы и трипанозомозы). М., 1955. 237 с. [Trofimov I.T. Protozoan diseases of farm animals (hemosporidiosis and trypanosomiasis). Moscow, 1955. 237 p. (In Russ.)]
  20. Шабад Л.М. Некоторые экспериментальные данные к этиологии и патогенезу опухолей // Вестник хирургии им. И.И. Грекова. 1954. Т. 74, № 3. С. 3–6. [Shabad L.M. Some experimental data on the etiology and pathogenesis of tumors. Vestnik khirurgii im. I.I. Grekova = Grekov’s Bulletin of Surgery, 1954, vol. 74, no. 3, pp. 6–17. (In Russ.)]
  21. Шабдарбаева Г.С., Абдыбекова А.М., Божбанов Б. Выявление очагов кровепаразитарных болезней жвачных животных на юге Казахстана // Евразийский союз ученых. 2016. № 12–2 (33). С. 17–21. [Shabdarbaeva G.S., Abdybekova A.M., Bozhbanov B. Detection of foci of blood parasitic diseases of ruminants in the south of Kazakhstan. Evraziiskii soyuz uchenykh = Eurasian Union of Scientists, 2016, no. 12–2 (33), pp. 17–21. (In Russ.)]
  22. Шкурупий В.А., Полоз Т.Л. Цитоморфология фолликулярных опухолей щитовидной железы. Дифференциальная диагностика методом компьютерного анализа изображений и нейросетевых технологий. Новосибирск: Наука, 2009. 190 с. [Shkurupy V.A., Poloz T.L. Cytomorphology of thyroid follicular tumors. Differentiated diagnostics using the method of computerized image analysis and neuronetwork technologies. Novosibirsk: Nauka, 2009. 190 p. (In Russ.)]
  23. Abittan B., Nizam A., Oey M., Callan F., Simmonds L., Pachtman S. A case of babesiosis in a pregnant patient treated with red blood cell exchange transfusion. Case Rep. Obstet. Gynecol., 2019, vol. 2019: 9869323. doi: 10.1155/2019/9869323
  24. Aderinboye O., Syed S. Congenital babesiosis in a four-week-old female infant. Pediatr. Infect. Dis. J., 2010, vol. 29, no. 2: 188. doi: 10.1097/INF.0b013e3181c3c971
  25. Ahmed J.S., Hauschild S., Schein E. The role of interleukin 2 (IL 2) in the proliferation of Theileria annulata-infected bovine lymphocytes. Parasitol. Res., 1987, vol. 73, no. 6, pp. 524–526. doi: 10.1007/bf00535327
  26. Ahmed J., Schnittger L., Mehlhorn H. Review: Theileria schizonts induce fundamental alterations in their host cells. Parasitol. Res., 1999, vol. 85, no. 7, pp. 527–538. doi: 10.1007/s004360050592
  27. Allred D.R. Antigenic variation in babesiosis: is there more than one ’why’? Microbes Infect., 2001, vol. 3, pp. 481–491. doi: 10.1016/S1286-4579(01)01404-6
  28. Ather I., Pourafshar N., Schain D., Gupte A., Casey M. Babesiosis: An unusual cause of sepsis after kidney transplantation and review of the literature. Transpl. Infect. Dis., 2017, vol. 19, no. 5: e12740. doi: 10.1111/tid.12740
  29. Auerbach M., Haubenstock A., Soloman G. Systemic babesiosis. Another cause of the hemophagocytic syndrome. Am. J. Med., 1986, vol. 80, pp. 301–303. doi: 10.1016/0002-9343(86)90028-8
  30. Bade N.A., Yared J.A. Unexpected babesiosis in a patient with worsening anemia after allogeneic hematopoietic stem cell transplantation. Blood, 2016, vol. 128, no. 7: 1019. doi: 10.1182/blood-2016-05-717900
  31. Baneth G., Florin-Christensen M., Cardoso L., Schnittger L. Reclassification of Theileria anna as Babesia vulpes sp. nov. Parasites & Vectors, 2015, vol. 8: 207. doi: 10.1186/s13071-015-0830-5
  32. Barry M., Bleackley R. Cytotoxic T lymphocytes: all roads lead to death. Nat. Rev. Immunol., 2002, vol. 2, no. 6, pp. 401–409. doi: 10.1038/nri819
  33. Baylin S.B., Herman J.G. DNA hypermethylation in tumorigenesis: epigenetics joins genetics. Trends Genet., 2000, vol. 16, no. 4, pp. 168–174. doi: 10.1016/s0168-9525(99)01971-x
  34. Bierne H., Cossart P. When bacteria a target the nucleus: the emerging family of nucleomodulins. Cell Microbiol., 2012, vol. 14, no. 5, pp. 622–633. doi: 10.1111/j.1462-5822.2012.01758.x
  35. Bierne H., Hamon M., Cossart P. Epigenetics and bacterial infections. Cold Spring Harb. Perspect. Med., 2012, vol. 2, no. 12: a010272. doi: 10.1101/cshperspect.a010272
  36. Brahimi-Horn M., Chiche J., Pouysségur J. Hypoxia and cancer. J. Mol. Med., 2007, vol. 85, no. 12, pp. 1301–1307. doi: 10.1007/s00109-007-0281-3
  37. Brennan M.B., Herwaldt B.L., Kazmierczak J.J., Weiss J.W., Klein C.L., Leith C.P., He R., Oberley M.J., Tonnetti L., Wilkins P.P., Gauthier G.M. Transmission of Babesia microti parasites by solid organ transplantation. Emerg. Infect. Dis., 2016, vol. 22, no. 11, pp. 1869–1876. doi: 10.3201/eid2211.151028
  38. Brown W.C. Molecular approaches to elucidating innate and acquired immune responses to Babesia bovis a protozoan parasite that causes persistent infection. Vet. Parasitol., 2001, vol. 101, no. 3–4, pp. 233–248. doi: 10.1016 / s0304-4017 (01) 00569-6
  39. Brown W.C., Norimine J., Knowles D.P., Goff W.L. Immune control of Babesia bovis infection. Vet. Parasitol., 2006, vol. 138, no. 1–2, pp. 75–87. doi: 10.1016 / j.vetpar.2006.01.041
  40. Boulouis H.-J., Chang C.-C., Henn J.B., Kasten R.W., Chomel B.B. Factors associated with the rapid emergence of zoonotic Bartonella infections. Vet. Res., 2005, vol. 36, no. 3, pp. 383–410. doi: 10.1051/vetres:2005009
  41. Boustani M.R., Lepore T.J., Gelfand J.A., Lazarus O.S. Acute respiratory failure in patients treated for babesiosis. Am. J. Respir. Crit. Care Med., 1994, vol. 149, no. 6, pp. 1689–1691. doi: 10.1164/ajrccm.149.6.8004331
  42. Bursakov S.A., Kovalchuk S.N. Co-infection with tick-borne disease agents in cattle in Russia. Ticks Tick Borne Dis., 2019, no. 10, pp. 709–713. doi: 10.1016/j.ttbdis.2019.03.004
  43. Busseniers H.E., Oertel Y.C. “Cellular adenomatoid nodules” of the thyroid: review of 219 fine-needle aspirates. Diagn. Cytopathol., 1993, vol. 9, no. 5, pp. 581–589. doi: 10.1002/dc.2840090523
  44. Cairns R.A., Harris I.S., Mak T.W. Regulation of cancer cell metabolism. Nat. Rev. Cancer, 2011, vol. 11, no. 2, pp. 85–95. doi: 10.1038/nrc2981
  45. Campbell J., Brown D., Nichani A., Howie S., Spooner R., Glass E. A non-protective T helper 1 response against the intra-macrophage protozoan Theileria annulata. Clin. Exp. Immunol., 1997, vol. 108, no. 3, pp. 463–470. doi: 10.1046/j.1365-2249.1997.3861290.x
  46. Campbell J.D., Nichani A.K., Brown D.J., Howie S.E., Spooner R.L., Glass E.J. Parasite-mediated steps in immune response failure during primary Theileria annulata infection. Trop. Anim. Health. Prod., 1997, vol. 29 (4 Suppl.): 133S-135S. doi: 10.1007/BF02632953
  47. Campbel J., Spooner R. Macrophages behaving badly: infected cells and subversion of immune responses to Theileria annulata. Parasitol. Today, 1999, vol. 15, no. 1, pp. 10–16. doi: 10.1016/s0169-4758(98)01359-3
  48. Certad G., Ngouanesavanh T., Guyot K., Gantois N., Chassat T., Mouray A., Fleurisse L., Pinon A., Cailliez J.-C., Dei-Cas E., Creusy C. Cryptosporidium parvum, a potential cause of colic adenocarcinoma. Infect. Agent Cancer, 2007, vol. 2, no.1: 22. doi: 10.1186/1750-9378-2-22
  49. Chakraborty S., Roy S., Mistry H.U., Murthy S.,George N., Bhandari V., Sharma P. Potential sabotage of host cell physiology by apicomplexan parasites for their survival benefits. Front. Immunol., 2017, vol. 8: 1261. doi: 10.3389/fimmu.2017.01261
  50. Chaussepied M., Langsley G. Theileria transformation of bovine leukocytes: a parasite model for the study of lymphoproliferation. Res. Immunol., 1996, vol. 147, no. 3, pp. 127–138. doi: 10.1016/0923-2494(96)83165-8
  51. Cheeseman K.M, Certad G., Weitzman J.B. [Parasites and cancer: is there a causal link?]. Med. Sci. (Paris), 2016. vol. 32, no. 10, pp. 867–873. doi: 10.1051/medsci/20163210020
  52. Cheeseman K.M., Weitzman J.B. Host-parasite interactions; an intimate epigenetic relationship. Cell. Microbiol., 2015, vol. 17, no. 8, pp. 1121–1132. doi: 10.1111/cmi.12471
  53. Cheeseman K.M., Weitzman J.B. [What makes a parasite “transforming”? Insights into cancer from the agents of an exotic pathology, Theileria spp.]. Bull. Soc. Pathol. Exot., 2017, vol. 110, no. 1, pp. 55–60. doi: 10.1007/s13149-017-0551-4
  54. Clark I.A., Budd A.C., Hsue G., Haymore B.R., Joyce A.J., Thorner R., Krause P.J. Absence of erythrocyte sequestration in a case of babesiosis in a splenectomized human patient. Malar. J., 2006, vol. 5: 69. doi: 10.1186/1475-2875-5-69
  55. Cock-Rada A.M., Medjkane S., Janski N., Yousfi N., Perichon M., Chaussepied M., Chluba J., Langsley G., Weitzman J.B. SMYD3 promotes cancer invasion by epigenetic upregulation of the metalloproteinase MMP-9. Cancer Res., 2012, vol. 72, no. 3, pp. 810–820. doi: 10.1158 / 0008-5472.CAN-11-1052
  56. Criado-Fornelio A., Martinez-Marcos A., Buling-Saraсa A., Barba-Carretero J.C: Molecular studies on Babesia, Theileria and Hepatozoon in southern Europe Part I: Epizootiological aspects. Vet. Parasitol., 2003, vol. 113, pp. 189–201. doi: 10.1016/s0304-4017(03)00078-5
  57. De Martel C., Ferlay J., Franceschi S., Vignat J., Bray F., Forman D., Plummer M Global burden of cancers attributable to infections in 2008: a review and synthetic analysis. Lancet Oncol., 2012, vol. 13, no. 6, pp. 607–615. doi: 10.1016/S1470-2045(12)70137-7
  58. Dessauge F., Hilaly S., Baumgartner M., Blumen B., Werling D., Langsley G. c-Myc activation by Theileria parasites promotes survival of infected B-lymphocytes. Oncogene, 2005, vol. 24, no. 6, pp. 1075–1083. doi: 10.1038/sj.onc.1208314
  59. Dewhirst M., Cao Y., Moeller B. Cycling hypoxia and free radicals regulate angiogenesis and radiotherapy response. Nat. Rev. Cancer, 2008, vol. 8, no. 6, pp. 425–437. doi: 10.1038/nrc2397
  60. Dobbelaere D., Heussler V. Transformation of leukocytes by Theileria parva and T. annulata. Annu. Rev. Microbiol., 1999, vol. 53, pp. 1–42. doi: 10.1146/annurev.micro.53.1.1
  61. Dobbelaere D.A., Fernandez P.C., Heussler V.T. Theileria parva: taking control of host cell proliferation and survival mechanisms. Cell. Microbiol., 2000, vol. 2, no. 2, pp. 91–99. doi: 10.1046 / j.1462-5822.2000.00045.x
  62. Dobroszycki J., Herwaldt B. L, Boctor F., Miller J.R., Linden J., Eberhard M.L., Yoon J.J., Ali N.M., Tanowitz H.B., Graham F., Weiss L.M., Wittner M. A cluster of transfusion-associated babesiosis cases traced to a single asymptomatic donor. JAMA, 1999, vol. 281, no. 10, pp. 927–930. doi: 10.1001/jama.281.10.927
  63. Dodd R.Y. Transmission of parasites by blood transfusion. Vox Sang.,1998, vol. 74, no. 2, pp. 161–163. doi: 10.1111/j.1423-0410.1998.tb05415.x.
  64. Dom G., Frank S., Floor S., Kehagias P., Libert F., Hoang C., Andry G., Spinette A., Craciun L., Aubin N.S., Tresallet C., Tissier F., Savagner F., Majjaj S., Gutierrez-Roelens I., Marbaix E., Dumont J., Maenhaut C. Thyroid follicular adenomas and carcinomas: molecular profiling provides evidence for a continuous evolution. Oncotarget, 2018, vol. 9, no. 12, pp. 10343–10359. doi: 10.18632/oncotarget.23130
  65. Entrican J.H., Williams H., Cook I.A., Lancaster W.M., Clark J.C. Babesiosis in man: a case from Scotland. Br. Med. J., 1979, vol. 2, no. 6188, pp. 474. doi: 10.1136/bmj.2.6188.474
  66. Feder H.M., Lawlor M., Krause P.J. Babesiosis in pregnancy. N. Engl. J. Med., 2003, vol. 349, no. 2, pp. 195–196. doi: 10.1056/NEJM200307103490221.
  67. Fox L.M., Wingerter S., Ahmed A., Arnold A., Chou J., Rhein L., Levy O. Neonatal babesiosis: case report and review of the literature. Pediatr. Infect. Dis. J., 2006, vol. 25, no. 2, pp. 169–173. doi: 10.1097/01.inf.0000195438.09628.b0
  68. Ghossein R. Encapsulated malignant follicular cell-derived thyroid tumors. Endocr. Pathol., 2010, vol. 21, no. 4, pp. 212–218. doi: 10.1007/s12022-010-9141-8.
  69. Goddeeris B., Morrison W. Techniques for the generation, cloning, and characterization of bovine cytotoxic T cells specific for the protozoan Theileria parva. J. Tissue Cult. Methods, 1988, vol. 11, no. 2, pp. 101–111. doi: 10.1007/BF01404140
  70. Gogvadze V., Orrenius S., Zhivotovsky B. Mitochondria in cancer cells: what is so special about them? Trends Cell. Biol., 2008, vol. 18, no. 4, pp. 165–173. doi: 10.1016 / j.tcb.2008.01.006
  71. Graumann K., Hippe D., Gross U., Lüder C.G. Mammalian apoptotic signalling pathways: multiple targets of protozoan parasites to activate or deactivate host cell death. Microbes Infect., 2009, vol. 11, no. 13, pp. 1079–1087. doi: 10.1016/j.micinf.2009.08.011
  72. Guergnon J., Dessauge F., Langsley G., Garcia A. Apoptosis of Theileria-infected lymphocytes induced upon parasite death involves activation of caspases 9 and 3. Biochimie, 2003, vol. 85, no. 8, pp. 771–776. doi: 10.1016/j.biochi.2003.09.013
  73. Haller D., Mackiewicz M., Gerber S., Beyer D., Kullmann B., Schneider I., Ahmed J.S., Seitzer U. Cytoplasmic sequestration of p53 promotes survival in leukocytes transformed by Theileria. Oncogene, 2010, vol. 29, no. 21, pp. 3079–3086. doi: 10.1038/onc.2010.61
  74. Hanahan D., Weinberg R. The hallmarks of cancer. Cell, 2000, vol. 100, pp. 57–70. doi: 10.1016/s0092-8674(00)81683-9
  75. Hanahan D., Weinberg R. Hallmarks of cancer: the next generation. Cell, 2011, vol. 144, no. 5, pp. 646–674. doi: 10.1016/ j.cell.2011.02.013
  76. Hanif M., Adhami N.A., Ahmed R., Ayinla R., Rahman H., Sanelli-Russo S., Gonzalez A., Fleischman J. Guillain–Barre syndrome following human babesiosis. Chest, 1999, vol. 116, no. 4: 407S.
  77. Harris A.L. Hypoxia — a key regulatory factor in tumor growth. Nat. Rev. Cancer, 2002, vol. 2, no.1, pp. 38–47. doi: 10.1038/nrc704
  78. Hausen Z. The search for infectious causes of human cancers: where and why. Virology, 2009, vol. 392, no. 1, pp. 1–10. doi: 10.1016/ j.virol.2009.06.001
  79. Hayashida K., Kajino K., Hattori M., Wallace M., Morrison I., Greene M.I., Sugimoto C. MDM2 regulates a novel form of incomplete neoplastic transformation of Theileria parva infected lymphocytes. Exp. Mol. Pathol., 2013, vol. 94, no. 1, pp. 228–238. doi: 10.1016/j.yexmp.2012.08.008
  80. Heussler V.T., Rottenberg S., Schwab R., Küenzi P., Fernandez P.C., McKellar S., Shiels B., Chen Z.J., Orth K., Wallach D., Dobbelaere D.A. Hijacking of host cell IKK signalosomes by the transforming parasite Theileria. Science, 2002, vol. 298, no. 5595, pp. 1033–1036. doi: 10.1126/science.1075462
  81. Huber S., Bär A., Epp S., Schmuckli-Maurer J., Eberhard N., Humbel B., Hemphill A., Woods K. Recruitment of host nuclear pore components to the vicinity of Theileria schizonts. mSphere, 2020, vol. 5, no. 1: e00709–19. doi: 10.1128/mSphere.00709-19
  82. Irwin P.J. Canine babesiosis: from molecular taxonomy to control. Parasit Vectors, 2009, vol. 2, suppl. 1: S4. doi: 10.1186/1756-3305-2-S1-S4
  83. Jensen K., Makins G.D., Kaliszewska A., Hulme M.J., Paxton E., Glass E.J. The protozoan parasite Theileria annulata alters the differentiation state of the infected macrophage and suppresses musculoaponeurotic fibrosarcoma oncogene (MAF) transcription factors. Int. J. Parasitol, 2009, vol. 39, no. 10, pp. 1099–1108. doi: 10.1016/j.ijpara.2009.02.020
  84. Joseph J.T., Purtill K., Wong S.J., Munoz J., Teal A., Madison-Antenucci S., Horowitz H.W., Aguero-Rosenfeld M.E., Moore J.M., Abramowsky C., Wormser G.P. Vertical transmission of Babesia microti, United States. Emerg. Infect. Dis., 2012, vol. 18, no. 8, pp. 1318–1321. doi: 10.3201/eid1808.110988
  85. Kinnaird J.H., Weir W., Durrani Z., Pillai S.S., Baird M., Shiels B.R. A bovine lymphosarcoma cell line infected with Theileria annulata exhibits an irreversible reconfiguration of host cell gene expression. PLoS One, 2013, vol. 8, no. 6: e66833. doi: 10.1371/journal.pone.0066833
  86. Koike T., Kimura N., Miyazaki K., Yabuta T., Kumamoto K., Takenoshita S., Chen J., Kobayashi M., Hosokawa M., Taniguchi A., Kojima T., Ishida N., Kawakita M., Yamamoto H., Takematsu H., Suzuki A., Kozutsumi Y., Kannagi R. Hypoxia induces adhesion molecules on cancer cells: a missing link between Warburg effect and induction of selectin-ligand carbohydrates. Proc. Natl Acad. Sci. USA, 2004, vol. 101, no. 21, pp. 8132–8137. doi: 10.1073/pnas.0402088101
  87. Kuenzi P., Schneider P., Dobbelaere D.A. Theileria parva-transformed T cells show enhanced resistance to Fas/Fas ligand-induced apoptosis Theileria parva-transformed T cells show enhanced resistance to Fas/Fas ligand-induced apoptosis. J. Immunol., 2003, vol. 171, no. 3, pp. 1224–1231. doi: 10.4049/jimmunol.171.3.1224
  88. Leiriao P., Rodrigues C.D., Albuquerque S.S., Mota M.M. Survival of protozoan intracellular parasites in host cells. EMBO Rep., 2004, vol. 5, no. 12, pp. 1142–1147. doi: 10.1038/sj.embor.7400299
  89. Lemercier C. Les infections bactériennes vues du génome eukaryote. Med. Sci. (Paris), 2014, vol. 30, no. 8–9, pp. 758–764. doi: 10.1051/medsci/20143008013
  90. Lengauer C., Kinzler K.W., Vogelstein B. Genetic instabilities in human cancers. Nature, 1998, vol. 396, no. 6712, pp. 643–649. doi: 10.1038/25292.
  91. Lubin A.S., Snydman D.R., Miller K.B. Persistent babesiosis in a stem cell transplant recipient. Leuk. Res., 2011, vol. 35, no. 6: e77–78. doi: 10.1016/j.leukres.2010.11.029
  92. Lux J., Weiss D., Linden J., Kessler D., Herwaldt B., Wong S., Keithly J., Della-Latta P., Scully B. Transfusion-associated babesiosis after heart transplant. Emerg. Infect. Dis., 2003, vol. 9, no. 1, pp. 116–119. doi: 10.3201/eid0901.020149
  93. Ma M., Baumgartner M. Intracellular Theileria annulata promote invasive cell motility through kinase regulation of the host actin cytoskeleton. PLoS Pathog., 2014, vol. 10, no. 3: e1004003. doi: 10.1371/journal.ppat.1004003
  94. Malagon F., Tapia J.L. Experimental transmission of Babesia microti infection by the oral route. Parasitol. Res., 1994, vol. 80, no. 8, pp. 645–648. doi: 10.1007/BF00932947.
  95. Mans B.J., Pienaar R., Latif A.A. A review of Theileria diagnostics and epidemiology. Int. J. Parasitol. Parasites Wildl., 2015, no. 4, pp. 104–118. doi: 10.1016/j.ijppaw.2014.12.006
  96. Marnett L.J. Lipid peroxidation-DNA damage by malondialdehyde. Mutat. Res., 1999, vol. 424, no. 1–2, pp. 83–95. doi: 10.1016/s0027-5107(99)00010-x.
  97. Marnett L.J. Chemistry and biology of DNA damage by malondialdehyde. IARC Sci. Publ., 1999, vol. 150, pp. 17–27.
  98. Marsolier J., Perichon M., DeBarry J.D., Villoutreix B.O., Chluba J., Lopez T., Garrido C., Zhou X.Z., Lu K.P., Fritsch L., Ait-Si-Ali S., Mhadhbi M., Medjkane S., Weitzman J.B. Theileria parasites secrete a prolyl isomerase to maintain host leukocyte transformation. Nature, 2015, vol. 520, no. 7547, pp. 378–382. doi: 10.1038/nature14044
  99. Marsolier J., Pineau S., Medjkane S., Perichon M., Yin Q., Flemington E., Weitzman M., Weitzman J. OncomiR addiction is generated by a miR-155 feedback loop in theileria-transformed leukocytes. PLoS Pathog., 2013, vol. 9, no. 4: e1003222. doi: 10.1371/journal.ppat.1003222
  100. Masuda M., Otsuka‐Yamasaki Y., Shiranaga N., Iguchi A., Uchida N., Sato R., Yamasaki M. Retrospective study on intercurrent pancreatitis with babesia gibsoni infection in dogs. J. Vet. Med. Sci., 2019, vol. 81, no. 11, pp. 1558–1563. doi: 10.1292/jvms.19-0280
  101. Mathupala S.P., Ko Y.H., Pedersen P.L. The pivotal roles of mitochondria in cancer: Warburg and beyond and encouraging prospects for effective therapies. Biochim. Biophys. Acta, 2010, vol. 1797, no. 6–7, pp. 1225–1230. doi: 10.1016/j.bbabio.2010.03.025
  102. Matjila P.T., Leisewitz A.L., Ooshuizen M.C., Jongejan F., Penzhorn B. Detection of a Theileria species in dogs in South Africa. Vet. Parasitol., 2008, vol. 157, no. 1–2, pp. 34–40. doi: 10.1016/j.vetpar.2008.06.025
  103. McHenry C.R., Phitayakorn R. Follicular adenoma and carcinoma of the thyroid gland. Oncologist, 2011, vol. 16, no. 5, pp. 585–593. doi: 10.1634/theoncologist.2010-0405
  104. McKeever D.J., Nyanjui J.K., Ballingall K.T. In vitro infection with Theileria parva is associated with IL10 expression in all bovine lymphocyte lineages. Parasite Immunol., 1997, vol. 19, no. 7, pp. 319–324. doi: 10.1046/j.1365-3024.1997.d01-214.x
  105. Medjkane S., Perichon M., Marsolier J., Dairou J., Weitzman J.B. Theileria induce oxidative stress and HIF1α activation that are essential for host leukocyte transformation. Oncogene, 2014, vol. 33, no. 14, pp. 1809–1817. doi: 10.1038/onc. 2013.134.
  106. Medjkane S., Weitzman J.B. A reversible Warburg effect is induced by Theileria parasites to transform host leukocytes. Cell Cycle, 2013, vol. 12, no. 14, pp. 2167–2168. doi: 10.4161/cc.25540
  107. Mehlhorn H., Schein E. The piroplasms: “A long story in short” or “Robert Koch has seen it”. Eur. J. Protistol., 1993, vol. 29, no. 3, pp. 279–293. doi: 10.1016/S0932-4739(11)80371-8
  108. Mehlhorn H., Schein E. Redescription of Babesia equi Laveran, 1901 as Theileria equi Mehlhorn, Schein 1998. Parasitol. Res., 1998, vol. 84, no. 6, pp. 467–475. doi: 10.1007/s004360050431
  109. Mesri E.A., Feitelson M., Munger K. Human viral oncogenesis: a cancer hallmarks analysis. Cell Host Microbe, 2014, vol. 15, no. 3, pp. 266–282. doi: 10.1016/j.chom.2014.02.011
  110. Metheni M., Echebli N., Chaussepied M., Ransy C., Chereau C., Jensen K., Glass E., Batteux F., Bouillaud F., Langsley G. The level of H2O2-type oxidative stress regulates virulence of Theileria-transformed leukocytes. Cell. Microbiol., 2014, vol. 16, no. 2, p. 269–279. doi: 10.1111/cmi.12218
  111. Metheni M., Lombes A., Bouillaud F., Batteux F., Langsley G. HIF-1α induction, proliferation and glycolysis of Theileria-infected leukocytes. Cell Microbiol., 2015, vol. 17, no. 4, pp. 467–472. doi: 10.1111/cmi.12421
  112. Mohr A.J., Lobetti R.G., van der Lugt J.J. Acute pancreatitis: a newly recognised potential complication of canine babesiosis. J. S. Afr. Vet. Assoc., 2000, vol. 71, no. 4, pp. 232–239. doi: 10.4102/jsava.v71i4.721
  113. Murase T., Ueda T., Yamato O., Tajima M., Maede Y. Oxidative damage and enhanced erythrophagocytosis in canine erythrocytes infected with Babesia gibsoni. J. Vet. Med. Sci., 1996, vol. 58, no. 3, pp. 259–261. doi: 10.1292/jvms.58.259
  114. Nakamura K., Yokoyama N., Igarashi I. Cyclin-dependent kinase inhibitors block erythrocyte invasion and intraerythrocytic development of Babesia bovis in vitro. Parasitology, 2007, vol. 134, no. 10, pp. 1347–53. doi: 10.1017/S0031182007002831
  115. New D.L., Quinn J.B., Quresbi M.Z., Sigler S.J. Vertically transmitted babesiosis. J. Pediatrics, 1997, vol. 131, no. 1 (Pt. 1), pp. 163–164. doi: 10.1016/s0022-3476(97)70143-4
  116. O’Connor R.M., Allred D.R. Selection of Babesia bovis-infected erythrocytes for adhesion to endothelial cells coselects for altered variant erythrocyte surface antigen isoforms. J. Immunol., 2000, vol. 164, no. 4, pp. 2037–2045. doi: 10.4049/jimmunol.164.4.2037
  117. Osorno B.M., Vega S., Ristic M., Robles C., Ibarra S. Isolation of Babesia spp. from asymptomatic human beings. Vet. Parasitol., 1976, vol. 2, no. 1, pp. 111–120. doi: 10.1016/0304-4017(76)90057-1
  118. Pedersen P.L. Warburg, me and Hexokinase 2: Multiple discoveries of key molecular events underlying one of cancers’ most common phenotypes, the “Warburg Effect”, i.e., elevated glycolysis in the presence of oxygen. J. Bioenerg. Biomembr., 2007, vol. 39, no. 3, pp. 211–222. doi: 10.1007/s10863-007-9094-x
  119. Ramos-Vara J.A., Miller M.A., Johnson G.C., Pace L.W. Immunohistochemical detection of thyroid transcription factor-1, thyroglobulin, and calcitonin in canine normal, hyperplastic, and neoplastic thyroid gland. Vet. Pathol., 2002, vol. 39, no. 4, pp. 480–487. doi: 10.1354/vp.39-4-480
  120. Raucher H.S., Jaffin H., Glass J.L. Babesiosis in Pregnancy. Obstetrics & Gynecology, 1984, vol. 63, no. 3, pp. 7S-9S.
  121. Rech A., Bittar C.M., Castro C.G. Jr., Azevedo K.R., Santos R.P., Machado A.R.L., Schwartsmann G., Goldani L., Brunetto A.L. Asymptomatic babesiosis in a child with hepatoblastoma. J. Pediatr. Hematol. Oncol., 2004, vol. 26, no. 3: 213. doi: 10.1097/00043426-200403000-00015
  122. Robertson K.D. DNA methylation, methyltransferases, and cancer. Oncogene, 2001, vol. 20, no. 24, pp. 3139–3155. doi: 10.1038/sj.onc.1204341
  123. Rolando M., Sanulli S., Rusniok C., Gomez-Valero L., Bertholet C., Sahr T., Margueron R., Buchrieser C. Legionella pneumophila effector RomA uniquely modifies host chromatin to repress gene expression and promote intracellular bacterial replication. Cell. Host. Microbe, 2013, vol. 13, no. 4, pp. 395–405. doi: 10.1016/j.chom.2013.03.004
  124. Rorive S., Eddafali B., Fernandez S., Decaestecker C., André S., Kaltner H., Kuwabara I., Liu F.T., Gabius H.J., Kiss R., Salmon I. Changes in galectin-7 and cytokeratin-19 expression during the progression of malignancy in thyroid tumors: diagnostic and biological implications. Mod. Pathol., 2002, vol. 15, no. 12, pp. 1294–1301. doi: 10.1097/01.MP.0000037306.19083.28
  125. Sauter C., Kurrer M.O. Intracellular bacteria in Hodgkin’s disease and sclerosing mediastinal B-cell lymphoma: sign of a bacterial etiology? Swiss Med. Wkly, 2002, vol. 132, no. 23–24, pp. 312–315.
  126. Schoeman J.P., Rees P., Herrtage M.E. Endocrine predictors of mortality in canine babesiosis caused by Babesia canis rossi. Vet. Parasitol., 2007, vol. 148, no. 2, pp. 75–82. doi: 10.1016/j.vetpar.2007.06.010
  127. Semenza G.L. Defining the role of hypoxia-inducible factor 1 in cancer biology and therapeutics. Oncogene, 2010, vol. 29, no. 5, pp. 625–634. doi: 10.1038/onc.2009.441
  128. Semenza G.L. Oxygen homeostasis. Wiley Interdiscip. Rev. Syst. Biol. Med., 2010, vol. 2, no. 3, pp. 336–361. doi: 10.1002/wsbm.69
  129. Shiels B., Langsley G., Weir W., Pain A., McKellar S., Dobbelaere D. Alteration of host cell phenotype by Theileria annulata and Theileria parva: mining for manipulators in the parasite genomes. Int. J. Parasitol., 2006, vol. 36, no. 1, pp. 9–21. doi: 10.1016/j.ijpara.2005.09.002
  130. Shiels B.R., McKellar S., Katzer F., Lyons K., Kinnaird J., Ward C., Wastling J.M., Swan D. A Theileria annulata DNA binding protein localized to the host cell nucleus alters the phenotype of a bovine macrophage cell line. Eukaryot. Cell, 2004, vol. 3, no. 2, pp. 495–505. doi: 10.1128/EC.3.2.495-505.2004
  131. Sivakumar T., Hayashida K., Sugimoto C., Yokoyama N. Evolution and genetic diversity of Theileria. Infect. Genet. Evol., 2014, vol. 27, pp. 250–263. doi: 10.1016/j.meegid.2014.07.013
  132. Snyder E.L., Dodd R.Y. Reducing the risk of blood transfusion. Hematology Am. Soc. Hematol. Educ. Program., 2001, vol. 2001, no. 1, pp. 433–442. doi: 10.1182/asheducation-2001.1.433
  133. Spooner R.L., Innes E.A., Glass E.J., Brown C.G. Theileria annulata and T. parva infect and transform different bovine mononuclear cells. Immunology, 1989, vol. 66, no. 2, pp. 284–288.
  134. Sulżyc-Bielicka V., Kołodziejczyk L., Jaczewska S., Bielicki D., Kładny J., Safranow K. Prevalence of Cryptosporidium sp. in patients with colorectal cancer. Pol. Przegl. Chir., 2012, vol. 84, no. 7, pp. 348–351. doi: 10.2478/v10035-012-0058-4
  135. Sulzyc-Bielicka V., Kuźna-Grygiel W., Kołodziejczyk L., Bielicki D., Kładny J., Stepień-Korzonek M., Telatyńska-Smieszek B. Cryptosporidiosis in patients with colorectal cancer. J. Parasitol., 2007; vol. 93, no. 3, pp. 722–724. doi: 10.1645/GE-1025R1.1
  136. Swan D.G., Phillips K., Tait A., Shiels B.R. Evidence for localisation of a Theileria parasite AT hook DNA-binding protein to the nucleus of immortalised bovine host cells. Mol. Biochem. Parasitol., 1999, vol. 101, no. 1–2, pp. 117–129. doi: 10.1016/S0166-6851(99)00064-X
  137. Swan D.G., Stern R., McKellar S., Phillips K., Oura C.A., Karagenc T.I., Stadler L., Shiels B.R. Characterisation of a cluster of genes encoding Theileria annulata AT hook DNA-binding proteins and evidence for localisation to the host cell nucleus. J. Cell Sci., 2001, vol. 114, no. 15, pp. 2747–2754. doi: 10.1242/jcs.114.15.2747
  138. Tili E., Michaille J.-J., Wernicke D., Alder H., Costinean S., Volinia S., Croce C.M. Mutator activity induced by microRNA-155 (miR-155) links inflammation and cancer. Proc. Natl Acad. Sci. USA, 2011, vol. 108, no. 12, pp. 4908–4913. doi: 10.1073/pnas.1101795108
  139. Tretina K., Gotia H.T., Mann D.J., Silva J.C. Theileria-transformed bovine leukocytes have cancer hallmarks. Trends Parasitol., 2015, vol. 31, no. 7, pp. 306–314. doi: 10.1016/j.pt.2015.04.001
  140. Upadhyay M., Samal J., Kandpal M., Singh V., Vivekanandan P. The Warburg effect: insights from the past decade. Pharmacol. Ther., 2013, vol. 137, no. 3, pp. 318–330. doi: 10.1016/j.pharmthera.2012.11.003
  141. Vittecoq M., Elguero E., Lafferty K.D., Roche B., Brodeur J., Gauthier-Clerc M., Missé D., Thomas F. Brain cancer mortality rates increase with Toxoplasma gondii seroprevalence in France. Infect. Genet. Evol., 2012, vol. 12, no. 2, pp. 496–498. doi: 10.1016/j.meegid.2012.01.013
  142. Weinberg F., Hamanaka R., Wheaton W.W., Weinberg S., Joseph J., Lopez M., Kalyanaraman B., Mutlu G.M., Budinger G.R., Chandel N.S. Mitochondrial metabolism and ROS generation are essential for Kras-mediated tumorigenicity. Proc. Natl Acad. Sci. USA, 2010, vol. 107, no. 19, pp. 8788–8793. doi: 10.1073/pnas.1003428107
  143. Weitzman M.D., Weitzman J.B. What’s the damage? The impact of pathogens on pathways that maintain host genome integrity. Cell Host Microbe, 2014, vol. 15, no. 3, pp. 283–294. doi: 10.1016/j.chom.2014.02.010
  144. Wroblewski L.E., Peek R.M., Wilson K.T. Helicobacter pylori and gastric cancer: factors that modulate disease risk. Clin. Microbiol. Rev., 2010, vol. 23, no. 4, pp. 713–739. doi: 10.1128/CMR.00011-10
  145. Wulansari R., Wijaya A., Ano H., Horii Y., Nasu T.,Yamane S., Makimura S. Clindamycin in the treatment of Babesia gibsoni infections in dogs. J. Am. Anim. Hosp. Assoc., 2003, vol. 39, no. 6, pp. 558–562. doi: 10,5326/0390558
  146. Zheng Y., Cai X., Bradley J.E. microRNAs in parasites and parasite infection. RNA Biol., 2013, vol. 10, no. 3, pp. 371–379. doi: 10.4161/rna.23716

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Figure 1. Follicular cancer. The thyrocyte cytoplasm is filled with basophilic inclusions with an area of increased optical density adjacent to the nucleus (schizogony). Vacuoles in the cytoplasm and nucleus. RBCs contain endoglobular inclusions. Romanovsky–Giemsa staining

Download (102KB)
3. Figure 2. Follicular cancer. Binuclear thyrocyte with basophilic inclusions in the cytoplasm and nuclei, with two areas of increased optical density (schizogony), vacuoles in the cytoplasm. RBCs contain endoglobular inclusions. Romanovsky–Giemsa staining

Download (110KB)
4. Figure 3. Follicular cancer. Cytoadhesive erythrocytes with endoglobular inclusions. Romanovsky–Giemsa staining

Download (80KB)
5. Figure 4. Papillary cancer. The cytoplasm of thyrocytes is filled with basophilic inclusions with an area of increased optical density of about 5 μm, located near the thyrocyte nucleus (schizogony). Romanovsky–Giemsa staining

Download (63KB)
6. Figure 5. Papillary cancer. Basophilic granularity is found in the thyrocyte cytoplasm and nucleus. Endoglobular inclusions of similar optical density are present in erythrocytes. Romanovsky–Giemsa staining

Download (49KB)
7. Figure 6. Papillary cancer. A binuclear thyrocyte with fine basophilic granularity in the cytoplasm and an area of increased nuclear optical density. Incomplete cytokinesis. Romanovsky–Giemsa staining

Download (54KB)
8. Figure 7. Papillary cancer. Thyrocyte polymorphic nuclei with vacuoles. A tiny basophilic granularity is observed in the cytoplasm. Areas of increased optical density (schizogony) are closely adjacent to the nuclei. Romanovsky–Giemsa staining

Download (61KB)
9. Figure 8. Papillary cancer. Vacuolized and cytoadhesive erythrocytes with endoglobular inclusions. Romanovsky–Giemsa staining

Download (55KB)
10. Figure 9. Papillary cancer. Vacuolized and cytoadhesive erythrocytes with large endoglobular inclusions. Romanovsky–Giemsa staining

Download (43KB)
11. Figure 10. Papillary cancer. Cytoadhesive erythrocytes with multiple endoglobular inclusions. Romanovsky–Giemsa staining

Download (116KB)
12. Figure 11. Papillary cancer. Prominent erythrocyte cytoadhesion with endoglobular inclusions. Romanovsky–Giemsa staining

Download (117KB)
13. Figure 12. Medullary carcinoma. Fusiform thyrocytes with polymorphic nuclei, the cytoplasm is filled with small basophilic inclusions. The foci of increased optical density of basophilic granularity are concentrated on one of the thyrocyte poles close to the nucleus. Romanovsky–Giemsa staining

Download (68KB)
14. Figure 13. Medullary carcinoma. Thyrocytes with small dusty pinkish granularity in the cytoplasm and an area of increased optical density adjacent to the nucleus (schizogony). Romanovsky–Giemsa staining

Download (61KB)
15. Figure 14. Medullary carcinoma. The thyrocyte cytoplasm is filled with fine blue-pink dusty granules. Large basophilic inclusions in the cytoplasm are identical in optical density to erythrocyte endoglobular inclusions. Romanovsky–Giemsa staining

Download (54KB)
16. Figure 15. Medullary carcinoma. Thyrocyte polymorphic nuclei and a round haemosporidian microschizont. Romanovsky–Giemsa staining

Download (56KB)
17. Figure 16. Medullary carcinoma. Polymorphonuclear thyrocytes with vacuoles in nuclei and cytoplasm. Romanovsky–Giemsa staining

Download (60KB)
18. Figure 17. Medullary carcinoma. Binuclear and quadrinuclear thyrocytes with large basophilic granularity in the cytoplasm. Vacuoles in the cytoplasm correspond in size to basophilic inclusions. Romanovsky–Giemsa staining

Download (64KB)
19. Figure 18. Medullary carcinoma. Cytoadhesion of erythrocytes with multiple small endoglobular inclusions in erythrocytes. Romanovsky–Giemsa staining

Download (87KB)
20. Figure 19. Follicular cancer. Nuclei (DNA) of haemosporidia in hyperplastic thyrocyte cytoplasm and on its nucleus. The thyrocyte nucleus is displaced to the cell periphery. Feulgen staining

Download (65KB)
21. Figure 20. Follicular cancer. A spherical thyrocyte with a nucleus displaced to the cell periphery. Nuclei (DNA) of haemosporidia of lilac color in the thyrocyte cytoplasm. Feulgen staining

Download (60KB)
22. Figure 21. Follicular cancer. The nuclei (DNA) of thyrocytes are vacuolated, like the cytoplasm, and are displaced to the cell periphery or deformed (compressed). The nuclei (DNA) of haemosporidia are located in the cytoplasm of thyrocytes and erythrocytes. Feulgen staining

Download (79KB)
23. Figure 22. Follicular cancer. Small nuclei (DNA) of haemosporidia inside and along the periphery of erythrocytes. Feulgen staining

Download (61KB)
24. Figure 23. Follicular cancer. Cytoadhesive erythrocytes with polymorphic nuclei (DNA) of haemosporidia. Feulgen staining

Download (70KB)
25. Figure 24. Papillary cancer. Polymorphic nuclei in thyrocytes. Haemosporidian DNA is found as small nucleoli on thyrocyte nuclei and diffusely in the cytoplasm. Feulgen staining

Download (79KB)
26. Figure 25. Papillary cancer. Polymorphic nuclei of thyrocytes. At the edges of the groove in the nucleus haemosporidian DNA is found. Haemosporidian microschizonts are located near the nuclei of thyrocytes. Feulgen staining

Download (61KB)
27. Figure 26. Papillary cancer. Microschizont — “Koch’ s body” or “pomegranate body” — of haemosporidia among erythrocytes. Polymorphic nuclei (DNA) of haemosporidia in erythrocytes. Feulgen staining

Download (63KB)
28. Figure 27. Papillary cancer. Cytoadhesion of blood erythrocytes with polymorphic nuclei (DNA) of haemosporidia, large nuclei of which (6–8 μm), together with their protoplasm, can occupy the entire erythrocyte. Feulgen staining

Download (63KB)
29. Figure 28. Papillary cancer. Haemosporidian nuclei are polymorphic. Severe haemosporidian damage to erythrocytes. Feulgen staining

Download (91KB)
30. Figure 29. Medullary carcinoma. The nuclei of thyrocytes are vacuolized and located eccentrically in the hyperplastic spherical cytoplasm. The nuclei (DNA) of haemosporidia are contoured or diffusely located in the cytoplasm of the thyrocyte. Feulgen staining

Download (78KB)
31. Figure 30. Medullary carcinoma. Thyrocyte vacuolized nucleus and cytoplasm after the development of a haemosporidia infection in it. Feulgen staining

Download (117KB)
32. Figure 31. Medullary carcinoma. One- and two-nuclear thyrocytes. The cytoplasm of thyrocytes is filled with haemosporidian DNA in the form of contoured nuclei or diffusely. Feulgen staining

Download (110KB)
33. Figure 32. Medullary carcinoma. Hyperplastic nuclei of thyrocytes. In the cytoplasm and on the nuclei, rounded areas of haemosporidian DNA are observed. Feulgen staining

Download (69KB)
34. Figure 33. Medullary carcinoma. Vacuolized and cytoadhered erythrocytes with nuclei (DNA) of haemosporidia. Feulgen staining

Download (101KB)

Copyright (c) 2023 Terletsky A., Akhmerova L.G.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».