T helper cell subsets and related target cells in acute COVID-19

Cover Page

Cite item

Full Text

Abstract

Current review presents a brief overview of the immune system dysregulation during acute COVID-19 and illustrates the main alterations in peripheral blood CD4+ T-cell (Th) subsets as well as related target cells. Effects of dendritic cell dysfunction induced by SARS-CoV-2 exhibited decreased expression of cell-surface HLA-DR, CCR7 as well as co-stimulatory molecules CD80 and CD86, suggesting reduced antigen presentation, migratory and activation capacities of peripheral blood dendritic cells. SARS-CoV-2-specific Th cells could be detected as early as days 2–4 post-symptom onset, whereas the prolonged lack of SARS-CoV-2-specific Th cells was associated with severe and/or poor COVID-19 outcome. Firstly, in acute COVID-19 the frequency of Th1 cell was comparable with control levels, but several studies have reported about upregulated inhibitory immune checkpoint receptors and exhaustion-associated molecules (TIM3, PD-1, BTLA, TIGIT etc.) on circulating CD8+ T-cells and NK-cells, whereas the macrophage count was increased in bronchoalveolar lavage (BAL) samples. Next, type 2 immune responses are mediated mainly by Th2 cells, and several studies have revealed a skewing towards dominance of Th2 cell subset in peripheral blood samples from patients with acute COVID-19. Furthermore, the decrease of circulating main Th2 target cells — basophiles and eosinophils — were associated with severe COVID-19, whereas the lung tissue was enriched with mast cells and relevant mediators released during degranulation. Moreover, the frequency of peripheral blood Th17 cells was closely linked to COVID-19 severity, so that low level of Th17 cells was observed in patients with severe COVID-19, but in BAL the relative number of Th17 cells as well as the concentrations of relevant effector cytokines were dramatically increased. It was shown that severe COVID-19 patients vs. healthy control had higher relative numbers of neutrophils if compared, and the majority of patients with COVID-19 had increased frequency and absolute number of immature neutrophils with altered ROS production. Finally, the frequency of Tfh cells was decreased during acute COVID-19 infection. Elevated count of activated Tfh were found as well as the alterations in Tfh cell subsets characterized by decreased “regulatory” Tfh1 cell and increased “pro-inflammatory” Tfh2 as well as Tfh17 cell subsets were revealed. Descriptions of peripheral blood B cells during an acute SARS-CoV-2 infection werev reported as relative B cell lymphopenia with decreased frequency of “naïve” and memory B cell subsets, as well as increased level of CD27hiCD38hiCD24 plasma cell precursors and atypical CD21low B cells. Thus, the emerging evidence suggests that functional alterations occur in all Th cell subsets being linked with loss-of-functions of main Th cell subsets target cells. Furthermore, recovered individuals could suffer from long-term immune dysregulation and other persistent symptoms lasting for many months even after SARS-CoV-2 elimination, a condition referred to as post-acute COVID-19 syndrome.

About the authors

I. V. Kudryavtsev

I.P. Pavlov First St. Petersburg State Medical University of the Ministry of Healthcare of Russian Federation; Institute of Experimental Medicine

Author for correspondence.
Email: igorek1981@yandex.ru

PhD (Biology), Head of the Cell Immunology Laboratory, Department of Immunology, Assistant Professor, Department of Immunology

Russian Federation, St. Petersburg; St. Petersburg

A. S. Golovkin

V.A. Almazov National Medical Research Centre

Email: golovkin_a@mail.ru

PhD, MD (Medicine), Head of a Research Group of Genetic Cell Engineering, Institute of Molecular Biology and Genetics

Russian Federation, St. Petersburg

Areg A. Totolian

I.P. Pavlov First St. Petersburg State Medical University of the Ministry of Healthcare of Russian Federation; St. Petersburg Pasteur Institute

Email: totolian@pasteurorg.ru

RAS Full Member, PhD, MD (Medicine), Professor, Head of the Department of Immunology, Director

Russian Federation, St. Petersburg; St. Petersburg

References

  1. Арсентьева Н.А., Любимова Н.Е., Бацунов О.К., Коробова З.Р., Станевич О.В., Лебедева А.А., Воробьев Е.А., Воробьева С.В., Куликов А.Н., Лиознов Д.А., Шарапова М.А., Певцов Д.Э., Тотолян А.А. Цитокины в плазме крови больных COVID-19 в острой фазе заболевания и фазе полного выздоровления // Медицинская иммунология. 2021. Т. 23, № 2. С. 311–326. [Arsentieva N.A., Liubimova N.E., Batsunov O.K., Korobova Z.R., Stanevich O.V., Lebedeva A.A., Vorobyov E.A., Vorobyova S.V., Kulikov A.N., Lioznov D.A., Sharapova M.A., Pevtcov D.E., Totolian A.A. Plasma cytokines in patients with COVID-19 during acute phase of the disease and following complete recovery. Meditsinskaya immunologiya = Medical Immunology (Russia), 2021, vol. 23, no. 2, pp. 311–326 (In Russ.)] doi: 10.15789/1563-0625-PCI-2312
  2. Иванова И.А., Омельченко Н.Д., Филиппенко А.В., Труфанова А.А., Носков А.К. Роль клеточного звена иммунитета в формировании иммунного ответа при коронавирусных инфекциях // Медицинская иммунология. 2021. Т. 23, № 6. С. 1229–1238. [Ivanova I.A., Omelchenko N.D., Filippenko A.V., Trufanova A.A., Noskov A.K. Role of the cellular immunity in the formation of the immune response in coronavirus infections. Meditsinskaya immunologiya = Medical Immunology (Russia), 2021, vol. 23, no. 6, pp. 1229–1238. (In Russ.)] doi: 10.15789/1563-0625-ROT-2302
  3. Кудрявцев И.В., Борисов А.Г., Васильева Е.В., Кробинец И.И., Савченко А.А., Серебрякова М.К., Тотолян Арег А. Фенотипическая характеристика цитотоксических Т-лимфоцитов: регуляторные и эффекторные молекулы // Медицинская иммунология. 2018. Т. 20, № 2. С. 227–240. [Kudryavtsev I.V., Borisov A.G., Vasilyeva E.V., Krobinets I.I., Savchenko A.A., Serebriakova M.K., Totolian Areg A. Phenotypic characterisation of peripheral blood cytotoxic T lymphocytes: regulatory and effector molecules. Meditsinskaya immunologiya = Medical Immunology (Russia), 2018, vol. 20, no. 2, pp. 227–240. (In Russ.)] doi: 10.15789/1563-0625-2018-2-227-240
  4. Кудрявцев И.В., Борисов А.Г., Кробинец И.И., Савченко А.А., Серебрякова М.К., Тотолян А.А. Хемокиновые рецепторы на Т-хелперах различного уровня дифференцировки: основные субпопуляции // Медицинская иммунология. 2016. Т. 18, № 3. С. 239–250. [Kudryavtsev I.V., Borisov A.G., Krobinets I.I., Savchenko A.A., Serebriakova M.K., Totolian A.A. Chemokine receptors at distinct differentiation stages of T-helpers from peripheral blood. Meditsinskaya immunologiya = Medical Immunology (Russia), 2016, vol. 18, no. 3, pp. 239-250. (In Russ.)]. doi: 10.15789/1563-0625-2016-3-239-250
  5. Лядова И.В., Стариков А.А. COVID-19 и вакцинация БЦЖ: есть ли связь? // Инфекция и иммунитет. 2020. Т. 10, № 3. С. 459–468. [Lyadova I.V., Starikov A.A. COVID-19 and BCG vaccine: is there a link? Infektsiya i immunitet = Russian Journal of Infection and Immunity, 2020, vol. 10, no. 3, pp. 459–468. (In Russ.)] doi: 10.15789/2220-7619-CAB-1472
  6. Смирнов В.С., Тотолян А.А. Врожденный иммунитет при коронавирусной инфекции // Инфекция и иммунитет. 2020. Т. 10, № 2. С. 259–268. [Smirnov V.S., Totolian A.A. Innate immunity in coronavirus infection. Infektsiya i immunitet = Russian Journal of Infection and Immunity, 2020, vol. 10, no. 2, pp. 259–268. (In Russ.)] doi: 10.15789/2220-7619-111-1440
  7. Afrin L.B., Weinstock L.B., Molderings G.J. Covid-19 hyperinflammation and post-Covid-19 illness may be rooted in mast cell activation syndrome. Int. J. Infect. Dis., 2020, vol. 100, pp. 327–332. doi: 10.1016/j.ijid.2020.09.016
  8. Alcorn J.F. IL-22 plays a critical role in maintaining epithelial integrity during pulmonary infection. Front. Immunol., 2020, vol. 11: 1160. doi: 10.3389/fimmu.2020.01160
  9. Amer S.A., Albeladi O.A., Elshabrawy A.M., Alsharief N.H., Alnakhli F.M., Almugathaui A.F., Almashahadi S.S., Dawood H.M., Malik M.B., Shah J., Aiash H. Role of neutrophil to lymphocyte ratio as a prognostic indicator for COVID-19. Health Sci. Rep., 2021, vol. 4, no. 4: e442. doi: 10.1002/hsr2.442
  10. Annunziato F., Romagnani C., Romagnani S. The 3 major types of innate and adaptive cell-mediated effector immunity. J. Allergy Clin. Immunol., 2015, vol. 135, no. 3, pp. 626–635. doi: 10.1016/j.jaci.2014.11.001
  11. Bakin E.A., Stanevich O.V., Chmelevsky M.P., Belash V.A., Belash A.A., Savateeva G.A., Bokinova V.A., Arsentieva N.A., Sayenko L.F., Korobenkov E.A., Lioznov D.A., Totolian A.A., Polushin Y.S., Kulikov A.N. A novel approach for COVID-19 patient condition tracking: from instant prediction to regular monitoring. Front. Med. (Lausanne), 2021, vol. 8: 744652. doi: 10.3389/fmed.2021.744652
  12. Bonecchi R., Bianchi G., Bordignon P.P., D’Ambrosio D., Lang R., Borsatti A., Sozzani S., Allavena P., Gray P.A., Mantovani A., Sinigaglia F. Differential expression of chemokine receptors and chemotactic responsiveness of type 1 T helper cells (Th1s) and Th2s. J. Exp. Med., 1998, vol. 187, no. 1, pp. 129–134. doi: 10.1084/jem.187.1.129
  13. Boppana S., Qin K., Files J.K., Russell R.M., Stoltz R., Bibollet-Ruche F., Bansal A., Erdmann N., Hahn B.H., Goepfert P.A. SARS-CoV-2-specific circulating T follicular helper cells correlate with neutralizing antibodies and increase during early convalescence. PLoS Pathog., 2021, vol. 17, no. 7: e1009761. doi: 10.1371/journal.ppat.1009761
  14. Braun J., Loyal L., Frentsch M., Wendisch D., Georg P., Kurth F., Hippenstiel S., Dingeldey M., Kruse B., Fauchere F., Baysal E., Mangold M., Henze L., Lauster R., Mall M.A., Beyer K., Röhmel J., Voigt S., Schmitz J., Miltenyi S., Demuth I., Müller M.A., Hocke A., Witzenrath M., Suttorp N., Kern F., Reimer U., Wenschuh H., Drosten C., Corman V.M., Giesecke-Thiel C., Sander L.E., Thiel A. SARS-CoV-2-reactive T cells in healthy donors and patients with COVID-19. Nature, 2020, vol. 587, no. 7833, pp. 270–274. doi: 10.1038/s41586-020-2598-9
  15. Byazrova M., Yusubalieva G., Spiridonova A., Efimov G., Mazurov D., Baranov K., Baklaushev V., Filatov A. Pattern of circulating SARS-CoV-2-specific antibody-secreting and memory B-cell generation in patients with acute COVID-19. Clin. Transl. Immunology, 2021, vol. 10, no. 2: e1245. doi: 10.1002/cti2.1245
  16. Cai H., Liu G., Zhong J., Zheng K., Xiao H., Li C., Song X., Li Y., Xu C., Wu H., He Z., Zhu Q. Immune checkpoints in viral infections. Viruses, 2020, vol. 12, no. 9: 1051. doi: 10.3390/v12091051
  17. Chen G., Wu D., Guo W., Cao Y., Huang D., Wang H., Wang T., Zhang X., Chen H., Yu H., Zhang X., Zhang M., Wu S., Song J., Chen T., Han M., Li S., Luo X., Zhao J., Ning Q. Clinical and immunological features of severe and moderate coronavirus disease 2019. J. Clin. Invest., 2020, vol. 130, no. 5, pp. 2620–2629. doi: 10.1172/JCI137244
  18. Chevrier S., Zurbuchen Y., Cervia C., Adamo S., Raeber M.E., de Souza N., Sivapatham S., Jacobs A., Bachli E., Rudiger A., Stüssi-Helbling M., Huber L.C., Schaer D.J., Nilsson J., Boyman O., Bodenmiller B. A distinct innate immune signature marks progression from mild to severe COVID-19. Cell Rep. Med., 2020, vol. 2, no. 1: 100166. doi: 10.1016/j.xcrm.2020.100166
  19. Chua R.L., Lukassen S., Trump S., Hennig B.P., Wendisch D., Pott F., Debnath O., Thürmann L., Kurth F., Völker M.T., Kazmierski J., Timmermann B., Twardziok S., Schneider S., Machleidt F., Müller-Redetzky H., Maier M., Krannich A., Schmidt S., Balzer F., Liebig J., Loske J., Suttorp N., Eils J., Ishaque N., Liebert U.G., von Kalle C., Hocke A., Witzenrath M., Goffinet C., Drosten C., Laudi S., Lehmann I., Conrad C., Sander L.E., Eils R. COVID-19 severity correlates with airway epithelium-immune cell interactions identified by single-cell analysis. Nat. Biotechnol., 2020, vol. 38, no. 8, pp. 970–979. doi: 10.1038/s41587-020-0602-4
  20. Collin M., Bigley V. Human dendritic cell subsets: an update. Immunology, 2018, vol. 154, pp. 3–20. doi: 10.1111/imm.12888
  21. Cortés-Vieyra R., Gutiérrez-Castellanos S., Álvarez-Aguilar C., Baizabal-Aguirre V.M., Nuñez-Anita R.E., Rocha-López A.G., Gómez-García A. Behavior of eosinophil counts in recovered and deceased COVID-19 patients over the course of the disease. Viruses, 2021 vol. 13, no. 9: 1675. doi: 10.3390/v13091675
  22. Crotty S. T follicular helper cell biology: a decade of discovery and diseases. Immunity, 2019, vol. 50, no. 5, pp. 1132–1148. doi: 10.1016/j.immuni.2019.04.011
  23. De Biasi S., Meschiari M., Gibellini L., Bellinazzi C., Borella R., Fidanza L., Gozzi L., Iannone A., Lo Tartaro D., Mattioli M., Paolini A., Menozzi M., Milić J., Franceschi G., Fantini R., Tonelli R., Sita M., Sarti M., Trenti T., Brugioni L., Cicchetti L., Facchinetti F., Pietrangelo A., Clini E., Girardis M., Guaraldi G., Mussini C., Cossarizza A. Marked T cell activation, senescence, exhaustion and skewing towards TH17 in patients with COVID-19 pneumonia. Nat. Commun., 2020, vol. 11, no. 1: 3434. doi: 10.1038/s41467-020-17292-4
  24. Demaria O., Carvelli J., Batista L., Thibult M.L., Morel A., André P., Morel Y., Vély F., Vivier E. Identification of druggable inhibitory immune checkpoints on natural killer cells in COVID-19. Cell Mol. Immunol., 2020, vol. 17, no. 9, pp. 995–997. doi: 10.1038/s41423-020-0493-9
  25. Dewanjee S., Kandimalla R., Kalra R.S., Valupadas C., Vallamkondu J., Kolli V., Dey Ray S., Reddy A.P., Reddy P.H. COVID-19 and rheumatoid arthritis crosstalk: emerging association, therapeutic options and challenges. Cells, 2021, vol. 10, no. 12: 3291. doi: 10.3390/cells10123291
  26. Durand M., Walter T., Pirnay T., Naessens T., Gueguen P., Goudot C., Lameiras S., Chang Q., Talaei N., Ornatsky O., Vassilevskaia T., Baulande S., Amigorena S., Segura E. Human lymphoid organ cDC2 and macrophages play complementary roles in T follicular helper responses. J. Exp. Med., 2019, vol. 216, no. 7, pp. 1561–1581. doi: 10.1084/jem.20181994
  27. Eberl G. Immunity by equilibrium. Nat. Rev. Immunol., 2016, vol. 16, no. 8, pp. 524–532. doi: 10.1038/nri.2016.75
  28. Gebremeskel S., Schanin J., Coyle K.M., Butuci M., Luu T., Brock E.C., Xu A., Wong A., Leung J., Korver W., Morin R.D., Schleimer R.P., Bochner B.S., Youngblood B.A. Mast cell and eosinophil activation are associated with COVID-19 and TLR-mediated viral inflammation: implications for an anti-siglec-8 antibody. Front. Immunol., 2021, vol. 12: 650331. doi: 10.3389/fimmu.2021.650331
  29. Giamarellos-Bourboulis E.J., Netea M.G., Rovina N., Akinosoglou K., Antoniadou A., Antonakos N., Damoraki G., Gkavogianni T., Adami M.E., Katsaounou P., Ntaganou M., Kyriakopoulou M., Dimopoulos G., Koutsodimitropoulos I., Velissaris D., Koufargyris P., Karageorgos A., Katrini K., Lekakis V., Lupse M., Kotsaki A., Renieris G., Theodoulou D., Panou V., Koukaki E., Koulouris N., Gogos C., Koutsoukou A. Complex immune dysregulation in COVID-19 patients with severe respiratory failure. Cell Host Microbe, 2020, vol. 27, no. 6, pp. 992–1000.e3. doi: 10.1016/j.chom.2020.04.009
  30. Gil-Etayo F.J., Suàrez-Fernández P., Cabrera-Marante O., Arroyo D., Garcinuño S., Naranjo L., Pleguezuelo D.E., Allende L.M., Mancebo E., Lalueza A., Díaz-Simón R., Paz-Artal E., Serrano A. T-helper cell subset response is a determining factor in COVID-19 progression. Front. Cell Infect. Microbiol., 2021, vol. 11: 624483. doi: 10.3389/fcimb.2021.624483
  31. Golovkin A., Kalinina O., Bezrukikh V., Aquino A., Zaikova E., Karonova T., Melnik O., Vasilieva E., Kudryavtsev I. Imbalanced immune response of T-cell and B-cell subsets in patients with moderate and severe COVID-19. Viruses, 2021, vol. 13, no. 10: 1966. doi: 10.3390/v13101966
  32. Gong F., Dai Y., Zheng T., Cheng L., Zhao D., Wang H., Liu M., Pei H., Jin T., Yu D., Zhou P. Peripheral CD4+ T cell subsets and antibody response in COVID-19 convalescent individuals. J. Clin. Invest., 2020, vol. 130, no. 12, pp. 6588–6599. doi: 10.1172/JCI141054
  33. Gosain R., Abdou Y., Singh A., Rana N., Puzanov I., Ernstoff M.S. COVID-19 and cancer: a comprehensive review. Curr. Oncol. Rep., 2020, vol. 22, no. 5, pp. 53. doi: 10.1007/s11912-020-00934-7
  34. Grifoni A., Sidney J., Vita R., Peters B., Crotty S., Weiskopf D., Sette A. SARS-CoV-2 human T cell epitopes: adaptive immune response against COVID-19. Cell Host Microbe, 2021, vol. 29, no. 7, pp. 1076–1092. doi: 10.1016/j.chom.2021.05.010
  35. Grifoni A., Weiskopf D., Ramirez S.I., Mateus J., Dan J.M., Moderbacher C.R., Rawlings S.A., Sutherland A., Premkumar L., Jadi R.S., Marrama D., de Silva A.M., Frazier A., Carlin A.F., Greenbaum J.A., Peters B., Krammer F., Smith D.M., Crotty S., Sette A. Targets of T cell responses to SARS-CoV-2 coronavirus in humans with COVID-19 disease and unexposed individuals. Cell, 2020, vol. 181, no. 7, pp. 1489–1501.e15. doi: 10.1016/j.cell.2020.05.015
  36. Guilliams M., Ginhoux F., Jakubzick C., Naik S.H., Onai N., Schraml B.U., Segura E., Tussiwand R., Yona S. Dendritic cells, monocytes and macrophages: a unified nomenclature based on ontogeny. Nat. Rev. Immunol., 2014, vol. 14, no. 8, pp. 571–578. doi: 10.1038/nri3712
  37. Guizani I., Fourti N., Zidi W., Feki M., Allal-Elasmi M. SARS-CoV-2 and pathological matrix remodeling mediators. Inflamm. Res., 2021, vol. 70, no. 8, pp. 847–858. doi: 10.1007/s00011–021-01487-6
  38. Gutiérrez-Bautista J.F., Rodriguez-Nicolas A., Rosales-Castillo A., Jiménez P., Garrido F., Anderson P., Ruiz-Cabello F., López-Ruz M.Á. Negative clinical evolution in COVID-19 patients is frequently accompanied with an increased proportion of undifferentiated Th cells and a strong underrepresentation of the Th1 subset. Front. Immunol., 2020, vol. 11: 596553. doi: 10.3389/fimmu.2020.596553
  39. Hou H., Zhang Y., Tang G., Luo Y., Liu W., Cheng C., Jiang Y., Xiong Z., Wu S., Sun Z., Xu S., Fan X., Wang F. Immunologic memory to SARS-CoV-2 in convalescent COVID-19 patients at 1 year postinfection. J. Allergy Clin. Immunol., 2021, vol. 148, no. 6, pp. 1481–1492.e2. doi: 10.1016/j.jaci.2021.09.008
  40. Hou Y., Zhao J., Martin W., Kallianpur A., Chung M.K., Jehi L., Sharifi N., Erzurum S., Eng C., Cheng F. New insights into genetic susceptibility of COVID-19: an ACE2 and TMPRSS2 polymorphism analysis. BMC Med., 2020, vol. 18, no. 1: 216. doi: 10.1186/s12916–020-01673-z
  41. Hume D.A., Irvine K.M., Pridans C. The mononuclear phagocyte system: the relationship between monocytes and macrophages. Trends Immunol., 2019, vol. 40, no. 2, pp. 98–112. doi: 10.1016/j.it.2018.11.007
  42. Iwamura A.P.D., Tavares da Silva M.R., Hümmelgen A.L., Soeiro Pereira P.V., Falcai A., Grumach A.S., Goudouris E., Neto A.C., Prando C. Immunity and inflammatory biomarkers in COVID-19: a systematic review. Rev. Med. Virol., 2021, vol. 31, no. 4: e2199. doi: 10.1002/rmv.2199
  43. Izcovich A., Ragusa M.A., Tortosa F., Lavena Marzio M.A., Agnoletti C., Bengolea A., Ceirano A., Espinosa F., Saavedra E., Sanguine V., Tassara A., Cid C., Catalano H.N., Agarwal A., Foroutan F., Rada G. Prognostic factors for severity and mortality in patients infected with COVID-19: a systematic review. PLoS One, 2020, vol. 15, no. 11: e0241955. doi: 10.1371/journal.pone.0241955
  44. Jennings G., Monaghan A., Xue F., Mockler D., Romero-Ortuño R. A systematic review of persistent symptoms and residual abnormal functioning following acute COVID-19: ongoing symptomatic phase vs. post-COVID-19 syndrome. J. Clin. Med., 2021, vol. 10, no. 24: 5913. doi: 10.3390/jcm10245913
  45. Jiang Y., Wei X., Guan J., Qin S., Wang Z., Lu H., Qian J., Wu L., Chen Y., Chen Y., Lin X. COVID-19 pneumonia: CD8+ T and NK cells are decreased in number but compensatory increased in cytotoxic potential. Clin. Immunol., 2020, vol. 218: 108516. doi: 10.1016/j.clim.2020.108516
  46. Juno J.A., Tan H.X., Lee W.S., Reynaldi A., Kelly H.G., Wragg K., Esterbauer R., Kent H.E., Batten C.J., Mordant F.L., Gherardin N.A., Pymm P., Dietrich M.H., Scott N.E., Tham W.H., Godfrey D.I., Subbarao K., Davenport M.P., Kent S.J., Wheatley A.K. Humoral and circulating follicular helper T cell responses in recovered patients with COVID-19. Nat. Med., 2020, vol. 26, no. 9, pp. 1428–1434. doi: 10.1038/s41591–020-0995-0
  47. Kalfaoglu B., Almeida-Santos J., Tye C.A., Satou Y., Ono M. T-cell hyperactivation and paralysis in severe COVID-19 infection revealed by single-cell analysis. Front. Immunol., 2020, vol. 11: 589380. doi: 10.3389/fimmu.2020.589380
  48. Kanannejad Z., Alyasin S., Esmaeilzadeh H., Nabavizadeh H., Amin R. Asthma and COVID-19 pandemic: focused on the eosinophil count and ACE2 expression. Eur. Ann. Allergy Clin. Immunol., 2021. doi: 10.23822/EurAnnACI.1764–1489.233
  49. Kaneko N., Kuo H.H., Boucau J., Farmer J.R., Allard-Chamard H., Mahajan V.S., Piechocka-Trocha A., Lefteri K., Osborn M., Bals J., Bartsch Y.C., Bonheur N., Caradonna T.M., Chevalier J., Chowdhury F., Diefenbach T.J., Einkauf K., Fallon J., Feldman J., Finn K.K., Garcia-Broncano P., Hartana C.A., Hauser B.M., Jiang C., Kaplonek P., Karpell M., Koscher E.C., Lian X., Liu H., Liu J., Ly N.L., Michell A.R., Rassadkina Y., Seiger K., Sessa L., Shin S., Singh N., Sun W., Sun X., Ticheli H.J., Waring M.T., Zhu A.L., Alter G., Li J.Z., Lingwood D., Schmidt A.G., Lichterfeld M., Walker B.D., Yu X.G., Padera R.F.Jr., Pillai S.; Massachusetts Consortium on Pathogen Readiness Specimen Working Group. Loss of Bcl-6-expressing T follicular helper cells and germinal centers in COVID-19. Cell, 2020, vol. 183, no. 1, pp. 143–157.e13. doi: 10.1016/j.cell.2020.08.025
  50. Kang C.K., Han G.C., Kim M., Kim G., Shin H.M., Song K.H., Choe P.G., Park W.B., Kim E.S., Kim H.B., Kim N.J., Kim H.R., Oh M.D. Aberrant hyperactivation of cytotoxic T-cell as a potential determinant of COVID-19 severity. Int. J. Infect. Dis., 2020, vol. 97, pp. 313–321. doi: 10.1016/j.ijid.2020.05.106
  51. Kempuraj D., Selvakumar G.P., Ahmed M.E., Raikwar S.P., Thangavel R., Khan A., Zaheer S.A., Iyer S.S., Burton C., James D., Zaheer A. COVID-19, mast cells, cytokine storm, psychological stress, and neuroinflammation. Neuroscientist, 2020, vol. 26, no. 5–6, pp. 402–414. doi: 10.1177/1073858420941476
  52. Kimura H., Francisco D., Conway M., Martinez F.D., Vercelli D., Polverino F., Billheimer D., Kraft M. Type 2 inflammation modulates ACE2 and TMPRSS2 in airway epithelial cells. J. Allergy Clin. Immunol., 2020, vol. 146, no. 1, pp. 80–88.e8. doi: 10.1016/j.jaci.2020.05.004
  53. Koutsakos M., Lee W.S., Wheatley A.K., Kent S.J., Juno J.A. T follicular helper cells in the humoral immune response to SARS-CoV-2 infection and vaccination. J. Leukoc. Biol., 2022, vol. 111, no. 2, pp. 355–365. doi: 10.1002/JLB.5MR0821-464R
  54. Kudryavtsev I., Kalinina O., Bezrukikh V., Melnik O., Golovkin A. The significance of phenotyping and quantification of plasma extracellular vesicles levels using high-sensitivity flow cytometry during COVID-19 treatment. Viruses, 2021, vol. 13, no. 5: 767. doi: 10.3390/v13050767
  55. Kudryavtsev I.V., Arsentieva N.A., Batsunov O.K., Korobova Z.R., Khamitova I.V., Isakov D.V., Kuznetsova R.N., Rubinstein A.A., Stanevich O.V., Lebedeva A.A., Vorobyov E.A., Vorobyova S.V., Kulikov A.N., Sharapova M.A., Pevtcov D.E., Totolian A.A. Alterations in B cell and follicular T-helper cell subsets in patients with acute COVID-19 and COVID-19 convalescents. Curr. Issues Mol. Biol., 2022, vol. 44, no. 1, pp. 194–205. doi: 10.3390/cimb44010014
  56. Kunal S., Madan M., Tarke C., Gautam D.K., Kinkar J.S., Gupta K., Agarwal R., Mittal S., Sharma S.M. Emerging spectrum of post-COVID-19 syndrome. Postgrad. Med. J., 2021. doi: 10.1136/postgradmedj-2020-139585
  57. Kuri-Cervantes L., Pampena M.B., Meng W., Rosenfeld A.M., Ittner C.A.G., Weisman A.R., Agyekum R.S., Mathew D., Baxter A.E., Vella L.A., Kuthuru O., Apostolidis S.A., Bershaw L., Dougherty J., Greenplate A.R., Pattekar A., Kim J., Han N., Gouma S., Weirick M.E., Arevalo C.P., Bolton M.J., Goodwin E.C., Anderson E.M., Hensley S.E., Jones T.K., Mangalmurti N.S., Luning Prak E.T., Wherry E.J., Meyer N.J., Betts M.R. Comprehensive mapping of immune perturbations associated with severe COVID-19. Sci. Immunol., 2020, vol. 5, no. 49: eabd7114. doi: 10.1126/sciimmunol.abd7114
  58. Kvedaraite E., Hertwig L., Sinha I., Ponzetta A., Hed Myrberg I., Lourda M., Dzidic M., Akber M., Klingström J., Folkesson E., Muvva J.R., Chen P., Gredmark-Russ S., Brighenti S., Norrby-Teglund A., Eriksson L.I., Rooyackers O., Aleman S., Strålin K., Ljunggren H.G., Ginhoux F., Björkström N.K., Henter J.I., Svensson M., Karolinska K.I.K. COVID-19 Study Group. Major alterations in the mononuclear phagocyte landscape associated with COVID-19 severity. Proc. Natl. Acad. Sci. USA, 2021, vol. 118, no. 6: e2018587118. doi: 10.1073/pnas.2018587118
  59. Laing A.G., Lorenc A., Del Molino Del Barrio I., Das A., Fish M., Monin L., Muñoz-Ruiz M., McKenzie D.R., Hayday T.S., Francos-Quijorna I., Kamdar S., Joseph M., Davies D., Davis R., Jennings A., Zlatareva I., Vantourout P., Wu Y., Sofra V., Cano F., Greco M., Theodoridis E., Freedman J.D., Gee S., Chan J.N.E., Ryan S., Bugallo-Blanco E., Peterson P., Kisand K., Haljasmägi L., Chadli L., Moingeon P., Martinez L., Merrick B., Bisnauthsing K., Brooks K., Ibrahim M.A.A., Mason J., Lopez Gomez F., Babalola K., Abdul-Jawad S., Cason J., Mant C., Seow J., Graham C., Doores K.J., Di Rosa F., Edgeworth J., Shankar-Hari M., Hayday A.C. A dynamic COVID-19 immune signature includes associations with poor prognosis. Nat. Med., 2020, vol. 26, no. 10, pp. 1623–1635. doi: 10.1038/s41591-020-1038-6
  60. Lau D., Lan L.Y., Andrews S.F., Henry C., Rojas K.T., Neu K.E., Huang M., Huang Y., DeKosky B., Palm A.E., Ippolito G.C., Georgiou G., Wilson P.C. Low CD21 expression defines a population of recent germinal center graduates primed for plasma cell differentiation. Sci. Immunol., 2017, vol. 2, no. 7: eaai8153. doi: 10.1126/sciimmunol.aai8153
  61. Leng Z., Zhu R., Hou W., Feng Y., Yang Y., Han Q., Shan G., Meng F., Du D., Wang S., Fan J., Wang W., Deng L., Shi H., Li H., Hu Z., Zhang F., Gao J., Liu H., Li X., Zhao Y., Yin K., He X., Gao Z., Wang Y., Yang B., Jin R., Stambler I., Lim L.W., Su H., Moskalev A., Cano A., Chakrabarti S., Min K.J., Ellison-Hughes G., Caruso C., Jin K., Zhao R.C. Transplantation of ACE2– mesenchymal stem cells improves the outcome of patients with COVID-19 pneumonia. Aging Dis., 2020, vol. 11, no. 2, pp. 216–228. doi: 10.14336/AD.2020.0228
  62. Li Q., Ding X., Xia G., Chen H.G., Chen F., Geng Z., Xu L., Lei S., Pan A., Wang L., Wang Z. Eosinopenia and elevated C-reactive protein facilitate triage of COVID-19 patients in fever clinic: a retrospective case-control study. EClinicalMedicine, 2020, vol. 23: 100375. doi: 10.1016/j.eclinm.2020.100375
  63. Liao M., Liu Y., Yuan J., Wen Y., Xu G., Zhao J., Cheng L., Li J., Wang X., Wang F., Liu L., Amit I., Zhang S., Zhang Z. Single-cell landscape of bronchoalveolar immune cells in patients with COVID-19. Nat. Med., 2020, vol. 26, pp. 842–844. doi: 10.1038/s41591–020-0901-9
  64. Liu J., Li S., Liu J., Liang B., Wang X., Wang H., Li W., Tong Q., Yi J., Zhao L., Xiong L., Guo C., Tian J., Luo J., Yao J., Pang R., Shen H., Peng C., Liu T., Zhang Q., Wu J., Xu L., Lu S., Wang B., Weng Z., Han C., Zhu H., Zhou R., Zhou H., Chen X., Ye P., Zhu B., Wang L., Zhou W., He S., He Y., Jie S., Wei P., Zhang J., Lu Y., Wang W., Zhang L., Li L., Zhou F., Wang J., Dittmer U., Lu M., Hu Y., Yang D., Zheng X. Longitudinal characteristics of lymphocyte responses and cytokine profiles in the peripheral blood of SARS-CoV-2 infected patients. EBioMedicine, 2020, vol. 55: 102763. doi: 10.1016/j.ebiom.2020.102763
  65. Malkova A., Kudlay D., Kudryavtsev I., Starshinova A., Yablonskiy P., Shoenfeld Y. Immunogenetic predictors of severe COVID-19. Vaccines (Basel), 2021, vol. 9, no. 3: 211. doi: 10.3390/vaccines9030211
  66. Malkova A., Kudryavtsev I., Starshinova A., Kudlay D., Zinchenko Y., Glushkova A., Yablonskiy P., Shoenfeld Y. Post COVID-19 syndrome in patients with asymptomatic/mild form. Pathogens, 2021, vol. 10, no. 11: 1408. doi: 10.3390/pathogens10111408
  67. Mann E.R., Menon M., Knight S.B., Konkel J.E., Jagger C., Shaw T.N., Krishnan S., Rattray M., Ustianowski A., Bakerly N.D., Dark P., Lord G., Simpson A., Felton T., Ho L.P.; NIHR Respiratory TRC, Feldmann M., CIRCO, Grainger J.R., Hussell T. Longitudinal immune profiling reveals key myeloid signatures associated with COVID-19. Sci Immunol., 2020, vol. 5, no. 51: eabd6197. doi: 10.1126/sciimmunol.abd6197
  68. Martín-Sánchez E., Garcés J.J., Maia C., Inogés S., López-Díaz de Cerio A., Carmona-Torre F., Marin-Oto M., Alegre F., Molano E., Fernandez-Alonso M., Perez C., Botta C., Zabaleta A., Alcaide A.B., Landecho M.F., Rua M., Pérez-Warnisher T., Blanco L., Sarvide S., Vilas-Zornoza A., Alignani D., Moreno C., Pineda I., Sogbe M., Argemi J., Paiva B., Yuste J.R. Immunological biomarkers of fatal COVID-19: a study of 868 patients. Front. Immunol., 2021, vol. 12: 659018. doi: 10.3389/fimmu.2021.659018
  69. Mathew D., Giles J.R., Baxter A.E., Oldridge D.A., Greenplate A.R., Wu J.E., Alanio C., Kuri-Cervantes L., Pampena M.B., D’Andrea K., Manne S., Chen Z., Huang Y.J., Reilly J.P., Weisman A.R., Ittner C.A.G., Kuthuru O., Dougherty J., Nzingha K., Han N., Kim J., Pattekar A., Goodwin E.C., Anderson E.M., Weirick M.E., Gouma S., Arevalo C.P., Bolton M.J., Chen F., Lacey S.F., Ramage H., Cherry S., Hensley S.E., Apostolidis S.A., Huang A.C., Vella L.A., UPenn COVID Processing Unit, Betts M.R., Meyer N.J., Wherry E.J. Deep immune profiling of COVID-19 patients reveals distinct immunotypes with therapeutic implications. Science, 2020, vol. 369, no. 6508: eabc8511. doi: 10.1126/science.abc8511
  70. Maucourant C., Filipovic I., Ponzetta A., Aleman S., Cornillet M., Hertwig L., Strunz B., Lentini A., Reinius B., Brownlie D., Cuapio A., Ask E.H., Hull R.M., Haroun-Izquierdo A., Schaffer M., Klingström J., Folkesson E., Buggert M., Sandberg J.K., Eriksson L.I., Rooyackers O., Ljunggren H.G., Malmberg K.J., Michaёlsson J., Marquardt N., Hammer Q., Strålin K., Björkström N.K.; Karolinska COVID-19 Study Group. Natural killer cell immunotypes related to COVID-19 disease severity. Sci. Immunol., 2020, vol. 5, no. 50: eabd6832. doi: 10.1126/sciimmunol.abd6832
  71. Morita R., Schmitt N., Bentebibel S.E., Ranganathan R., Bourdery L., Zurawski G., Foucat E., Dullaers M., Oh S., Sabzghabaei N., Lavecchio E.M., Punaro M., Pascual V., Banchereau J., Ueno H. Human blood CXCR5(+)CD4(+) T cells are counterparts of T follicular cells and contain specific subsets that differentially support antibody secretion. Immunity, 2011, vol. 34, no. 1, pp. 108–121. doi: 10.1016/j.immuni.2010.12.012
  72. Motta Junior J.D.S., Miggiolaro A.F.R.D.S., Nagashima S., de Paula C.B.V., Baena C.P., Scharfstein J., de Noronha L. Mast cells in alveolar septa of COVID-19 patients: a pathogenic pathway that may link interstitial edema to immunothrombosis. Front. Immunol., 2020, vol. 11: 574862. doi: 10.3389/fimmu
  73. Mylvaganam R.J., Bailey J.I., Sznajder J.I., Sala M.A.; Northwestern Comprehensive COVID Center Consortium. Recovering from a pandemic: pulmonary fibrosis after SARS-CoV-2 infection. Eur Respir Rev., 2021, vol. 30, no. 162: 210194. doi: 10.1183/16000617.0194-2021.73
  74. Nair A.P., Soliman A., Al Masalamani M.A., De Sanctis V., Nashwan A.J., Sasi S., Ali E.A., Hassan O.A., Iqbal F.M., Yassin M.A. Clinical outcome of eosinophilia in patients with COVID-19: a controlled study. Acta Biomed., 2020, vol. 91, no. 4: e2020165. doi: 10.23750/abm.v91i4.10564
  75. Neidleman J., Luo X., Frouard J., Xie G., Gill G., Stein E.S., McGregor M., Ma T., George A.F., Kosters A., Greene W.C., Vasquez J., Ghosn E., Lee S., Roan N.R. SARS-CoV-2-specific T cells exhibit phenotypic features of helper function, lack of terminal differentiation, and high proliferation potential. Cell Rep. Med., 2020, vol. 1, no. 6: 100081. doi: 10.1016/j.xcrm.2020.100081
  76. Ni L., Ye F., Cheng M.L., Feng Y., Deng Y.Q., Zhao H., Wei P., Ge J., Gou M., Li X., Sun L., Cao T., Wang P., Zhou C., Zhang R., Liang P., Guo H., Wang X., Qin C.F., Chen F., Dong C. Detection of SARS-CoV-2-specific humoral and cellular immunity in COVID-19 convalescent individuals. Immunity, 2020, vol. 52, no. 6, pp. 971–977.e3. doi: 10.1016/j.immuni.2020.04.023
  77. Patente T.A., Pinho M.P., Oliveira A.A., Evangelista G.C.M., Bergami-Santos P.C., Barbuto J.A.M. Human dendritic cells: their heterogeneity and clinical application potential in cancer immunotherapy. Front. Immunol., 2019, vol. 9: 3176. doi: 10.3389/fimmu.2018.03176
  78. Picchianti Diamanti A., Rosado M.M., Nicastri E., Sesti G., Pioli C., Laganà B. Severe acute respiratory syndrome coronavirus-2 infection and autoimmunity 1 year later: the era of vaccines. Front. Immunol., 2021, vol. 12: 708848. doi: 10.3389/fimmu.2021.708848
  79. Qeadan F., Chehade M., Tingey B., Egbert J., Dellon E.S., Peterson K.A. Patients with eosinophilic gastrointestinal disorders have lower in-hospital mortality rates related to COVID-19. J. Allergy Clin. Immunol Pract., 2021, vol. 9, no. 12, pp. 4473–4476.e4. doi: 10.1016/j.jaip.2021.09.022
  80. Rodriguez L., Pekkarinen P.T., Lakshmikanth T., Tan Z., Consiglio C.R., Pou C., Chen Y., Mugabo C.H., Nguyen N.A., Nowlan K., Strandin T., Levanov L., Mikes J., Wang J., Kantele A., Hepojoki J., Vapalahti O., Heinonen S., Kekäläinen E., Brodin P. Systems-level immunomonitoring from acute to recovery phase of severe COVID-19. Cell Rep. Med., 2020, vol. 1, no. 5: 100078. doi: 10.1016/j.xcrm.2020.100078
  81. Rydyznski Moderbacher C., Ramirez S.I., Dan J.M., Grifoni A., Hastie K.M., Weiskopf D., Belanger S., Abbott R.K., Kim C., Choi J., Kato Y., Crotty E.G., Kim C., Rawlings S.A., Mateus J., Tse L.P.V., Frazier A., Baric R., Peters B., Greenbaum J., Ollmann Saphire E., Smith D.M., Sette A., Crotty S. Antigen-specific adaptive immunity to SARS-CoV-2 in acute COVID-19 and associations with age and disease severity. Cell, 2020, vol. 183, no. 4, pp. 996–1012.e19. doi: 10.1016/j.cell.2020.09.038
  82. Santa Cruz A., Mendes-Frias A., Oliveira A.I., Dias L., Matos A.R., Carvalho A., Capela C., Pedrosa J., Castro A.G., Silvestre R. Interleukin-6 is a biomarker for the development of fatal severe acute respiratory syndrome coronavirus 2 pneumonia. Front. Immunol., 2021, vol. 12: 613422. doi: 10.3389/fimmu.2021.613422
  83. Sattler A., Angermair S., Stockmann H., Heim K.M., Khadzhynov D., Treskatsch S., Halleck F., Kreis M.E., Kotsch K. SARS-CoV-2-specific T cell responses and correlations with COVID-19 patient predisposition. J. Clin. Invest., 2020, vol. 130, no. 12, pp. 6477–6489. doi: 10.1172/JCI140965
  84. Schultheiß C., Paschold L., Simnica D., Mohme M., Willscher E., von Wenserski L., Scholz R., Wieters I., Dahlke C., Tolosa E., Sedding D.G., Ciesek S., Addo M., Binder M. Next-generation sequencing of T and B cell receptor repertoires from COVID-19 patients showed signatures associated with severity of disease. Immunity, 2020, vol. 53, no. 2, pp. 442–455.e4. doi: 10.1016/j.immuni.2020.06.024
  85. Sekine T., Perez-Potti A., Rivera-Ballesteros O., Stralin K., Gorin J.B., Olsson A., Llewellyn-Lacey S., Kamal H., Bogdanovic G., Muschiol S., Wullimann D.J., Kammann T., Emgård J., Parrot T., Folkesson E.; Karolinska COVID-19 Study Group, Rooyackers O., Eriksson L.I., Henter J.I., Sönnerborg A., Allander T., Albert J., Nielsen M., Klingström J., Gredmark-Russ S., Björkström N.K., Sandberg J.K., Price D.A., Ljunggren H.G., Aleman S., Buggert M. Robust T cell immunity in convalescent individuals with asymptomatic or mild COVID-19. Cell, 2020, vol. 183, no. 1, pp. 158–168.e14. doi: 10.1016/j.cell.2020.08.017
  86. Shibabaw T. Inflammatory cytokine: IL-17A signaling pathway in patients present with COVID-19 and current treatment strategy. J. Inflamm. Res., 2020, vol. 13, pp. 673–680. doi: 10.2147/JIR.S278335
  87. Silvin A., Chapuis N., Dunsmore G., Goubet A.G., Dubuisson A., Derosa L., Almire C., Hénon C., Kosmider O., Droin N., Rameau P., Catelain C., Alfaro A., Dussiau C., Friedrich C., Sourdeau E., Marin N., Szwebel T.A., Cantin D., Mouthon L., Borderie D., Deloger M., Bredel D., Mouraud S., Drubay D., Andrieu M., Lhonneur A.S., Saada V., Stoclin A., Willekens C., Pommeret F., Griscelli F., Ng L.G., Zhang Z., Bost P., Amit I., Barlesi F., Marabelle A., Pène F., Gachot B., André F., Zitvogel L., Ginhoux F., Fontenay M., Solary E. Elevated calprotectin and abnormal myeloid cell subsets discriminate severe from mild COVID-19. Cell, 2020, vol. 182, no. 6, pp. 1401–1418.e18. doi: 10.1016/j.cell.2020.08.002
  88. Spoerl S., Kremer A.N., Aigner M., Eisenhauer N., Koch P., Meretuk L., Löffler P., Tenbusch M., Maier C., Überla K., Heinzerling L., Frey B., Lutzny-Geier G., Winkler T.H., Krönke G., Vetter M., Bruns H., Neurath M.F., Mackensen A., Kremer A.E., Völkl S. Upregulation of CCR4 in activated CD8+ T cells indicates enhanced lung homing in patients with severe acute SARS-CoV-2 infection. Eur. J. Immunol., 2021, vol. 51, no. 6, pp. 1436–1448. doi: 10.1002/eji.202049135
  89. Tan A.T., Linster M., Tan C.W., Le Bert N., Chia W.N., Kunasegaran K., Zhuang Y., Tham C.Y.L., Chia A., Smith G.J.D., Young B., Kalimuddin S., Low J.G.H., Lye D., Wang L.F., Bertoletti A. Early induction of functional SARS-CoV-2-specific T cells associates with rapid viral clearance and mild disease in COVID-19 patients. Cell Rep., 2021, vol. 34, no. 6: 108728. doi: 10.1016/j.celrep.2021.108728
  90. Tong X., Cheng A., Yuan X., Zhong X., Wang H., Zhou W., Xu X., Li Y. Characteristics of peripheral white blood cells in COVID-19 patients revealed by a retrospective cohort study. BMC Infect. Dis., 2021, vol. 21, no. 1: 1236. doi: 10.1186/s12879-021-06899-7
  91. Van Eeden C., Khan L., Osman M.S., Cohen Tervaert J.W. Natural killer cell dysfunction and its role in COVID-19. Int. J. Mol. Sci., 2020, vol. 21, no. 17: 6351. doi: 10.3390/ijms21176351
  92. Varchetta S., Mele D., Oliviero B., Mantovani S., Ludovisi S., Cerino A., Bruno R., Castelli A., Mosconi M., Vecchia M., Roda S., Sachs M., Klersy C., Mondelli M.U. Unique immunological profile in patients with COVID-19. Cell Mol. Immunol., 2020, vol. 18, no. 3, pp. 604–612. doi: 10.1038/s41423-020-00557-9
  93. Vinuesa C.G., Linterman M.A., Yu D., MacLennan I.C. Follicular helper T cells. Annu Rev. Immunol., 2016, vol. 34, pp. 335–368. doi: 10.1146/annurev-immunol-041015-055605
  94. Vitte J., Diallo A.B., Boumaza A., Lopez A., Michel M., Allardet-Servent J., Mezouar S., Sereme Y., Busnel J.M., Miloud T., Malergue F., Morange P.E., Halfon P., Olive D., Leone M., Mege J.L. A granulocytic signature identifies COVID-19 and its severity. J. Infect. Dis., 2020, vol. 222, no. 12, pp. 1985–1996. doi: 10.1093/infdis/jiaa591
  95. Wang F., Nie J., Wang H., Zhao Q., Xiong Y., Deng L., Song S., Ma Z., Mo P., Zhang Y. Characteristics of peripheral lymphocyte subset alteration in COVID-19 pneumonia. J. Infect. Dis., 2020, vol. 221, no. 11, pp. 1762–1769. doi: 10.1093/infdis/jiaa150
  96. Weiskopf D., Schmitz K.S., Raadsen M.P., Grifoni A., Okba N.M.A., Endeman H., van den Akker J.P.C., Molenkamp R., Koopmans M.P.G., van Gorp E.C.M., Haagmans B.L., de Swart R.L., Sette A., de Vries R.D. Phenotype and kinetics of SARS-CoV-2-specific T cells in COVID-19 patients with acute respiratory distress syndrome. Sci. Immunol., 2020, vol. 5, no. 48: eabd2071. doi: 10.1126/sciimmunol.abd2071
  97. Wilk A.J., Rustagi A., Zhao N.Q., Roque J., Martínez-Colón G.J., McKechnie J.L., Ivison G.T., Ranganath T., Vergara R., Hollis T., Simpson L.J., Grant P., Subramanian A., Rogers A.J., Blish C.A. A single-cell atlas of the peripheral immune response in patients with severe COVID-19. Nat. Med., 2020, vol. 26, no. 7, pp. 1070–1076. doi: 10.1038/s41591-020-0944-y
  98. Winheim E., Rinke L., Lutz K., Reischer A., Leutbecher A., Wolfram L., Rausch L., Kranich J., Wratil P.R., Huber J.E., Baumjohann D., Rothenfusser S., Schubert B., Hilgendorff A., Hellmuth J.C., Scherer C., Muenchhoff M., von Bergwelt-Baildon M., Stark K., Straub T., Brocker T., Keppler O.T., Subklewe M., Krug A.B. Impaired function and delayed regeneration of dendritic cells in COVID-19. PLoS Pathog., 2021, vol. 17, no. 10: e1009742. doi: 10.1371/journal.ppat.1009742
  99. Woodruff M.C., Ramonell R.P., Nguyen D.C., Cashman K.S., Saini A.S., Haddad N.S., Ley A.M., Kyu S., Howell J.C., Ozturk T., Lee S., Suryadevara N., Case J.B., Bugrovsky R., Chen W., Estrada J., Morrison-Porter A., Derrico A., Anam F.A., Sharma M., Wu H.M., Le S.N., Jenks S.A., Tipton C.M., Staitieh B., Daiss J.L., Ghosn E., Diamond M.S., Carnahan R.H., Crowe J.E. Jr., Hu W.T., Lee F.E., Sanz I. Extrafollicular B cell responses correlate with neutralizing antibodies and morbidity in COVID-19. Nat. Immunol., 2020, vol. 21, no. 12, pp. 1506–1516. doi: 10.1038/s41590-020-00814-z
  100. Xie G., Ding F., Han L., Yin D., Lu H., Zhang M. The role of peripheral blood eosinophil counts in COVID-19 patients. Allergy, 2021, vol. 76, no. 2, pp. 471–482. doi: 10.1111/all.14465
  101. Yan B., Yang J., Xie Y., Tang X. Relationship between blood eosinophil levels and COVID-19 mortality. World Allergy Organ J., 2021, vol. 14, no. 3: 100521. doi: 10.1016/j.waojou.2021.100521
  102. Yao C., Bora S.A., Parimon T., Zaman T., Friedman O.A., Palatinus J.A., Surapaneni N.S., Matusov Y.P., Chiang G.C., Kassar A.G., Patel N., Green C.E.R., Aziz A.W., Suri H., Suda J., Lopez A.A., Martins G.A., Stripp B.R., Gharib S.A., Goodridge H.S., Chen P. Cell-type-specific immune dysregulation in severely ill COVID-19 patients. Cell Rep., 2021, vol. 34, no. 13: 108943. doi: 10.1016/j.celrep.2021.108943
  103. Youdi H., Bing Z., Shan Z., Xiaoqian W., Renxi W. Chemokine-expressing Th1 and treg cells are increased in the lung of patients with COVID-19. SSRN Electronic Journal, 2020. doi: 10.2139/ssrn.3629437
  104. Zhao Q., Yuan Y., Zhang J., Li J., Li W., Guo K., Wang Y., Chen J., Yan W., Wang B., Jing N., Ma B., Zhang Q. Early predictors of severe COVID-19 among hospitalized patients. J. Clin. Lab. Anal., 2021, pp. e24177. doi: 10.1002/jcla.24177
  105. Zhao Y., Kilian C., Turner J.E., Bosurgi L., Roedl K., Bartsch P., Gnirck A.C., Cortesi F., Schultheiß C., Hellmig M., Enk L.U.B., Hausmann F., Borchers A., Wong M.N., Paust H.J., Siracusa F., Scheibel N., Herrmann M., Rosati E., Bacher P., Kylies D., Jarczak D., Lütgehetmann M., Pfefferle S., Steurer S., Zur-Wiesch J.S., Puelles V.G., Sperhake J.P., Addo M.M., Lohse A.W., Binder M., Huber S., Huber T.B., Kluge S., Bonn S., Panzer U., Gagliani N., Krebs C.F. Clonal expansion and activation of tissue-resident memory-like Th17 cells expressing GM-CSF in the lungs of severe COVID-19 patients. Sci. Immunol., 2021, vol. 6, no. 56: eabf6692. doi: 10.1126/sciimmunol.abf6692
  106. Zheng M., Gao Y., Wang G., Song G., Liu S., Sun D., Xu Y., Tian Z. Functional exhaustion of antiviral lymphocytes in COVID-19 patients. Cell Mol. Immunol., 2020, vol. 17, no. 5, pp. 533–535. doi: 10.1038/s41423-020-0402-2
  107. Zhou R., To K.K., Wong Y.C., Liu L., Zhou B., Li X., Huang H., Mo Y., Luk T.Y., Lau T.T., Yeung P., Chan W.M., Wu A.K., Lung K.C., Tsang O.T., Leung W.S., Hung I.F., Yuen K.Y., Chen Z. Acute SARS-CoV-2 infection impairs dendritic cell and T cell responses. Immunity, 2020, vol. 53, no. 4, pp. 864–877.e5. doi: 10.1016/j.immuni.2020.07.026
  108. Zhu X., Zhu J. CD4 T helper cell subsets and related human immunological disorders. Int. J. Mol. Sci., 2020, vol. 21, no. 21: 8011. doi: 10.3390/ijms21218011

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2022 Kudryavtsev I.V., Golovkin A.S., Totolian A.A.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».