Оценка и прогноз заболеваемости ОРВИ-гриппом с помощью математической модели SIR+A на территории Москвы в 2016 году

Обложка

Цитировать

Полный текст

Аннотация

Из-за высокой трансмиссивности и способности вызывать крупные эпидемии, грипп представляет собой серьезную проблему для мирового здравоохранения. Эпидемии и пандемии гриппа связаны с изменениями в структуре общества, которые способствуют распространению новых штаммов в конкретных экологических и социальных условиях. В настоящее время грипп является одним из самых распространенных заболеваний в мире. Ежегодно он вызывает эпидемии или даже пандемии, нередко приводя к летальному исходу. Уникальная способность вирусов гриппа к изменчивости путем точечных мутаций, рекомбинаций и реассортации генов, сопровождающаяся изменением биологических свойств вируса — основная причина неконтролируемого распространения инфекции. В связи с этим изучение популяции восприимчивых индивидуумов с использованием вероятностных моделей не только дает дополнительную информацию о вспышке, но и позволяет отслеживать динамику эпидемии на контролируемых территориях. Понимание эпидемиологии гриппа имеет решающее значение в распределении ресурсов здравоохранения. Основой мерой общественного здравоохранения в борьбе с вирусом является вакцинация. Однако существуют уязвимые группы населения, такие как пожилые люди и лица с ослабленным иммунитетом, которые, как правило, не обладают защитным уровнем антител к вирусу гриппа. Несмотря на успехи в создании вакцин и средств химиотерапии, эпидемии гриппа по-прежнему имеют огромные масштабы. При этом достоверные способы прогноза заболеваемости с учетом скорости развития эпидемической ситуации на сегодняшний день отсутствуют. Отслеживание и прогнозирование возникающих эпидемий затруднено из-за несоответствия между динамикой эпидемии, которую можно анализировать по данным эпиднадзора, и системой отслеживания числа заболевших гриппом. Наличие мутаций у вируса гриппа усугубляют данную ситуацию, изменяя истинную динамику заболеваемости. Использование вероятностных моделей для оценки параметров стохастической эпидемии будет способствовать более точному прогнозу изменения заболеваемости. В настоящей работе с целью прогноза изменения заболеваемости используется вероятностная модель, учитывающая взаимосвязь между инфицированными, восприимчивыми и невосприимчивыми индивидуумами, а также агрессивностью внешних рисков — SIR+A. С помощью данной модели проведены оценка и прогноз заболеваемости ОРВИ-гриппом на территории Москвы в 2016 г. Введен и рассчитан новый параметр – интенсивность заражения, с помощью которого можно проводить достоверный анализ заболеваемости и осуществлять прогноз относительно ее изменения. 

Об авторах

Н. А. Контаров

ФГАОУ ВО Первый Московский государственный медицинский университет им. И.М. Сеченова МЗ РФ;
ФГБНУ НИИ вакцин и сывороток им. И.И. Мечникова

Автор, ответственный за переписку.
Email: kontarov@mail.ru

к.б.н., доцент кафедры медицинской и биологической физики;

ведущий научный сотрудник лаборатории детских вирусных инфекций,

105064, Москва, Малый Казенный пер., 5а

Россия

Г. В. Архарова

ФГАОУ ВО Первый Московский государственный медицинский университет им. И.М. Сеченова МЗ РФ

Email: fake@neicon.ru

к.б.н., доцент кафедры медицинской и биологической физики,

Москва

Россия

Ю. Б. Гришунина

Московский институт электроники и математики им. А.Н. Тихонова Национального исследовательского
университета «Высшая школа экономики»

Email: fake@neicon.ru

старший преподаватель департамента прикладной математики,

Москва

Россия

С. А. Гришунина

Московский институт электроники и математики им. А.Н. Тихонова Национального исследовательского
университета «Высшая школа экономики»;
Московский государственный университет им. М.В. Ломоносова

Email: fake@neicon.ru

ассистент департамента прикладной математики;

аспирант кафедры теории вероятностей механикоматематического факультета

Россия

Н. В. Юминова

ФГБНУ НИИ вакцин и сывороток им. И.И. Мечникова

Email: fake@neicon.ru

д.б.н., зам. директора по науке, зав. лабораторией детских вирусных инфекций,

Москва

Россия

Список литературы

  1. Бароян О.В., Рвачев Л.А., Иванников Ю.Г. Моделирование и прогнозирование эпидемий гриппа для территории СССР. М.: Медицина, 1977. 546 с.
  2. Бейли Н. Математика в биологии и медицине. Москва: Мир, 1970. 326 с.
  3. Economou A., Lopez-Herrero M.J. The deterministic SIS epidemic model in a Markovian random environment. J. Math. Biol., 2016, vol. 73, no. 1, pp. 91–121. doi: 10.1007/s00285-015-0943-7
  4. Pellis L, House T, Keeling M.J. Exact and approximate moment closures for non-Markovian network epidemics. J. Theor. Biol., 2015, vol. 382, pp. 160–177. doi: 10.1016/j.jtbi.2015.04.039
  5. Rebuli N.P., Bean N.G., Ross J.V. Hybrid Markov chain models of S-I-R disease dynamics. J. Math. Biol., 2017, vol. 75, no. 3, pp. 521–541. doi: 10.1007/s00285-016-1085-2

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Контаров Н.А., Архарова Г.В., Гришунина Ю.Б., Гришунина С.А., Юминова Н.В., 2019

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».