POLYLACTIC ACID NANOPARTICLES INFLUENCE ON IMMUNOGENICITY OF THE PROTEIN BOUND WITH THEM

封面

如何引用文章

全文:

详细

We investigated immunogenic properties of proteins bound with nanoparticles. A process for producing spherical nanoparticles having size of 20 microns by polymerization of lactic acid and an optimal method of nanoparticle surface activation were described. Activated nanoparticles were used for covalent binding of model fusion protein comprising sequences of human beta-2 microglobulin and green fluorescent protein. It is shown that the nanoparticles were able to bind 3 micrograms of the protein per 1 mg of the polymer. According to the results of confocal microscopy and electrophoresis the protein is firmly adsorbed on the surface of the granules. F1 (CBA x C57BL) mice were subjected to intraperitoneal immunization with fusion protein modified nanoparticles and equivalent mixture of unmodified nanoparticles and unbound fusion protein. Blood was taken at 2 weeks after three-time intraperitoneal immunization. Antibody level to model protein was determined in mouse sera using enzyme-linked immunosorbent assay. Each of experimental and control groups comprised 39 animals. The validity of the results was evaluated using the Mann–Whitney test. It is shown that the average antibody level in the control group was 1.8 times greater than that in the experimental group. The diffe rence was significant (p < 0.004). We discuss the significance of the results in terms of development traps capable to bind virus particles in blood and to provide immune response.

作者简介

D. Polyakov

Institute of Experimental Medicine;
North-Western State Medical University named after I.I. Mechnikov;
St. Petersburg State University

编辑信件的主要联系方式.
Email: ravendoctor@mail.ru

PhD (Medicine), Researcher, Department of Molecular Genetics, 197376, St. Petersburg, Akademika Pavlova str., 12;

Assistant Professor, Department of Medical Genetics;

Researcher, Interdepartmental Laboratory of Biomedical Chemistry, Institute of Chemistry

俄罗斯联邦

O. Antimonova

Institute of Experimental Medicine

Email: fake@neicon.ru

Junior Researcher and PhD Student, Department of Molecular Genetics,

St. Petersburg

俄罗斯联邦

R. Sakhabeev

Institute of Experimental Medicine

Email: fake@neicon.ru

PhD Student, Department of Molecular Genetics,

St. Petersburg

俄罗斯联邦

N. Grudinina

Institute of Experimental Medicine

Email: fake@neicon.ru

PhD (Biology), Senior Researcher, Department of Molecular Genetics,

St. Petersburg

俄罗斯联邦

A. Khodova

St. Petersburg State University

Email: fake@neicon.ru

Masters Degree Student,

St. Petersburg

俄罗斯联邦

E. Sinitsyna

St. Petersburg State University;
Institute of Macromolecular Compound

Email: fake@neicon.ru

PhD (Chemistry), Researcher, Interdepartmental Laboratory of Biomedical Chemistry, Institute of Chemistry;

Researcher, Laboratory of Polymer Sorbents and Carriers for Biotechnology, Russian Academy of Sciences,

St. Petersburg

俄罗斯联邦

V. Korzhikov-Vlakh

St. Petersburg State University

Email: fake@neicon.ru

PhD (Chemistry), Associate Professor, Interdepartmental Laboratory of Biomedical Chemistry, Institute of Chemistry,

St. Petersburg

俄罗斯联邦

T. Tennikova

St. Petersburg State University

Email: fake@neicon.ru

PhD, MD (Chemistry), Professor, Head Researcher, Head of the Interdepartmental Laboratory of Biomedical Chemistry, Institute of Chemistry, 

St. Petersburg

俄罗斯联邦

M. Shavlovsky

Institute of Experimental Medicine;
North-Western State Medical University named after I.I. Mechnikov

Email: fake@neicon.ru

PhD, MD (Medicine), Professor, Head of the Laboratory of Human Molecular Genetics, Department of Molecular Genetics;

Professor of the Department of Medical Genetics,

St. Petersburg

俄罗斯联邦

参考

  1. Антимонова О.И., Грудинина Н.А., Егоров В.В., Поляков Д.С., Ильин В.В., Шавловский М.М. Взаимодействие красителя конго красный с фибриллами лизоцима, бета-2-микроглобулина и транстиретина // Цитология. 2016. Т. 58, № 2. С. 156–163. [Antimonova O.I., Grudinina N.A., Egorov V.V., Polyakov D.S., Iljin V.V., Shavlovsky M.M. Interaction of the dye congo red with fibrils of lysozyme, beta-2-microglobulin and transthyretin. Tsitologiya = Cell and Tissue Biology, 2016, vol. 58, no. 2, pp. 156–163. (In Russ.)]
  2. Иванов А.В., Кузякин А.О., Кочетков С.Н. Молекулярная биология вируса гепатита С // Успехи биологической химии. 2005. Т. 45. С. 37—86. [Ivanov A.V., Kuzyakin A.O., Kochetkov S.N. Molecular biology of hepatitis C virus. Uspekhi Biologicheskoi Khimii = Biological Chemistry Reviews, 2005, vol. 45, pp. 37—86. (In Russ.)]
  3. Поляков Д.С., Грудинина Н.А., Соловьев К.В., Егоров В.В., Сироткин А.К., Алейникова Т.Д., Тотолян Арег А., Шавловский М.М. Бета-2-микроглобулиновый амилоидоз: фибриллогенез природного и рекомбинантных бета-2-микроглобулинов человека // Медицинский академический журнал. 2010. Т. 10, № 2. С. 40–49. [Poyakov D.S., Grudinina N.A., Solovyov K.V., Egorov V.V., Sirotkin A.K., Aleinicova T.D., Totolian Areg A., Shavlovsky M.M. Bela-2-microglobuline amyloidosis: fibrillogenesis of natural and recombinant human beta-2-microglobulines. Meditsinskii akademicheskii zhurnal = Medical Aсademical Journal, 2010, vol. 10, no. 2, pp. 40–49. (In Russ.)]
  4. Поляков Д.С., Грудинина Н.А., Соловьев К.В., Егоров В.В., Сироткин А.К., Алейникова Т.Д., Тотолян Арег А., Шавловский М.М. Получение рекомбинантного β2-микроглобулина человека и его фибриллогенез при низких и нейтральных значениях рН // Молекулярная медицина. 2011. № 2. С. 36–39. [Polyakov D.S., Grudinina N.A., Solovyov K.V., Egorov V.V., Sirotkin A.K., Aleinikova T.D., Totolian Areg A., Shavlovsky M.M. Production of recombinant human β2-microglobulin and its amyloid fibril formation at acidic and neutral pH. Molekulyarnaya meditsina = Molecular Medicine, 2011, no. 2, pp. 36–39. (In Russ.)]
  5. Поляков Д.С., Сахабеев Р.Г., Шавловский М.М. Частичная денатурация рекомбинантного белка для его аффинного выделения // Прикладная биохимия и микробиология. 2016. Т. 52, № 1. С. 122–127. [Polyakov D.S., Sakhabeyev R.G., Shavlovsky M.M. Partial denaturation of recombinant protein for affinity purification. Prikladnaya biokhimiya i mikrobiologiya = Applied Biochemistry and Microbiology, 2016, vol. 52, no. 1, pp. 122–127. (In Russ.)]
  6. Поляков Д.С., Тотолян Арег А., Шавловский М.М. Получение природного бета-2-микроглобулина человека // Молекулярная медицина. 2010. № 6. С. 39–43. [Polyakov D.S., Totolian Areg A., Shavlovsky M.M. Isolation of native human β-2-microglobulin. Molekulyarnaya meditsina = Molecular Medicine, 2010, no. 6, pp. 39–43. (In Russ.)]
  7. Поляков Д.С., Шавловский М.М. Молекулярные основы β2-микроглобулинового амилоидоза // Медицинский академический журнал. 2014. Т. 14, № 1. С. 24–41. [Polyakov D.S., Shavlovsky M.M. Molecular basis of β2-microglobulin amyloidosis. Meditsinskii akademicheskii zhurnal = Medical Aсademical Journal, 2014, vol. 14, no. 1, pp. 24–41. (In Russ.)]
  8. Berka U., Hamann M.V., Lindemann D. Early events in foamy virus — host interaction and intracellular trafficking. Viruses, 2013, vol. 5, pp. 1055–1074.
  9. Bulina M.E., Chudakov D.M., Mudrik N.N., Lukyanov K.A. Interconversion of anthozoa GFP-like fluorescent and non-fluorescent proteins by mutagenesis. BMC Biochem., 2002, vol. 3, p. 7.
  10. Chong C.S., Cao M., Wong W.W., Fischer K.P., Addison W.R., Kwon G.S., Tyrrell D.L., Samuel J. Enhancement of T helper type 1 immune responses against hepatitis B virus core antigen by PLGA nanoparticle vaccine delivery. J. Control Release, 2005, no. 102 (1), pp. 85–99. doi: 10.1016/j.jconrel.2004.09.014
  11. Korzhikov V., Averianov I., Litvinchuk E., Tennikova T. Polyester-based microparticles of different hydrophobicity: the patterns of lipophilic drug entrapment and release. J. Microencapsul., 2016, vol. 33 (3), pp. 199–208. doi: 10.3109/02652048.2016.1144818
  12. Solovyov K.V., Kern A.M., Grudinina N.A., Aleynikova T.D., Polyakov D.S., Morozova I.V., Shavlovsky M.M. Genetic structures and conditions of their expression, which allow receiving native recombinant proteins with high output. Int. J. Biomed., 2012, vol. 2, iss. 1, pp. 45–49.
  13. Solovyov K.V., Polyakov D.S., Grudinina N.A., Egorov V.V., Morozova I.V., Aleynikova T.D., Shavlovsky M.M. Expression in E. coli and purification of the fibrillogenic fusion proteins TTR-sfGFP and β2M-sfGFP. Prep. Biochem. Biotechnol., 2011, vol. 41, iss. 4, pp. 337–349.

补充文件

附件文件
动作
1. JATS XML

版权所有 © Polyakov D.S., Antimonova O.I., Sakhabeev R.G., Grudinina N.A., Khodova A.E., Sinitsyna E.S., Korzhikov-Vlakh V.A., Tennikova T.B., Shavlovsky M.M., 2017

Creative Commons License
此作品已接受知识共享署名 4.0国际许可协议的许可

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».