Superimposed high-frequency jet ventilation in children with oncohematological diseases and acute respiratory distress syndrome
- 作者: Ivanashkin A.Y.1, Novichkova G.A.1, Lazarev V.V.1,2, Khamin I.G.1, Tsypin L.E.2, Spiridonova E.A.1, Maschan A.A.1
-
隶属关系:
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology
- Pirogov Russian National Research Medical University
- 期: 卷 11, 编号 4 (2021)
- 页面: 485-500
- 栏目: Original Study Articles
- URL: https://bakhtiniada.ru/2219-4061/article/view/123537
- DOI: https://doi.org/10.17816/psaic1009
- ID: 123537
如何引用文章
全文:
详细
BACKGROUND: The mortality rate of children with hematological cancer and acute respiratory distress syndrome is still high, which is often associated with the ineffectiveness of traditional mechanical ventilation methods in the treatment of critical hypoxemia in these patients. Currently, the search continues for alternative methods of respiratory support, one of which is the combined high-frequency jet artificial ventilation of the lungs.
AIM: This study aimed to evaluate the efficacy and safety of combined high-frequency jet artificial ventilation in the treatment of children with hematological malignancies and severe acute respiratory distress syndrome.
MATERIALS AND METHODS: The study was conducted in the Department of Resuscitation and Intensive Care of the Dmitry Rogachev National Medical Research Center for Pediatric Hematology, Oncology and Immunology, from 2016 to 2020. Combined high-frequency jet artificial ventilation was used as an alternative method of respiratory support.
RESULTS: In case of severe hypoxemia caused by secondary severe acute respiratory distress syndrome, the use of combined high-frequency jet ventilation after 12 h leads to a significant improvement in arterial blood oxygenation, improves the biomechanical characteristics of the respiratory system, and reduces the likelihood of developing ventilator-associated lung damage. An increase in oxygenation and absence of an effect on the indicators of central hemodynamics provide a greater delivery of oxygen to the tissues, thereby improving the general condition of the patients.
CONCLUSIONS: In severe parenchymal respiratory failure accompanied by critical hypoxemia, combined high-frequency jet artificial ventilation of the lungs can be considered an alternative method of respiratory support.
作者简介
Aleksey Ivanashkin
Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology
编辑信件的主要联系方式.
Email: ivanashkin@yandex.ru
ORCID iD: 0000-0002-4348-4573
SPIN 代码: 2694-6501
anesthesiologist-resuscitator
俄罗斯联邦, 1, Samory Mashela st., 117997, MoscowGalina Novichkova
Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology
Email: gnovichkova@yandex.ru
ORCID iD: 0000-0002-2322-5734
SPIN 代码: 7890-1419
Dr. Sci. (Med.), Professor, General Director
俄罗斯联邦, 1, Samory Mashela st., 117997, MoscowVladimir Lazarev
Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology; Pirogov Russian National Research Medical University
Email: lazarev_vv@inbox.ru
ORCID iD: 0000-0001-8417-3555
SPIN 代码: 4414-0677
Dr. Sci. (Med.), Professor, Head of the Department of Pediatric Anesthesiology and Intensive Care, anesthesiologist-resuscitator
俄罗斯联邦, 1, Samory Mashela st., 117997, Moscow; MoscowIgor Khamin
Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology
Email: igorhamin@yandex.ru
ORCID iD: 0000-0001-8264-2258
SPIN 代码: 8369-1378
Cand. Sci. (Med.), Head of the Department of Pediatric Anesthesiology and Intensive Care, anesthesiologist-resuscitator
俄罗斯联邦, 1, Samory Mashela st., 117997, MoscowLeonid Tsypin
Pirogov Russian National Research Medical University
Email: cypin1939@mail.ru
ORCID iD: 0000-0002-3114-8759
SPIN 代码: 5062-2010
Dr. Sci. (Med.), Professor of Children Anesthesiology and Intensive Care Department
俄罗斯联邦, 1, Samory Mashela st., 117997, MoscowElena Spiridonova
Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology
Email: spiridonova.e.a@gmail.com
ORCID iD: 0000-0002-5230-5725
SPIN 代码: 1729-8002
Dr. Sci. (Med.), Professor
俄罗斯联邦, 1, Samory Mashela st., 117997, MoscowAleksey Maschan
Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology
Email: hemoncim@yandex.ru
ORCID iD: 0000-0002-0016-6698
SPIN 代码: 4505-2346
Scopus 作者 ID: 55915056400
Researcher ID: A-4792-2019
Dr. Sci. (Med.), Professor, Corresponding Member of the Russian Academy of Sciences
俄罗斯联邦, 1, Samory Mashela st., 117997, Moscow
参考
- Garner JS, Jarvis RW, Emori TG, et al. CDC definitions for nosocomial infections. Am J Infect Control. 1988;16(3):128–140. doi: 10.1016/0196-6553(88)90053-3
- Bojko T, Notterman D, Greenwald B, et al. Acute hypoxemic respiratory failure in children following bone marrow transplantation: an outcome and pathologic study. Crit Care Med. 1995;23(4):755–759. doi: 10.1097/00003246-199504000-00026
- Pelosi P, D’Onofrio D, Chiumello D, et al. Pulmonary and extrapulmonary acute respiratory distress syndrome are different. Eur Respir J. 2003;22(42):48–56. doi: 10.1183/09031936.03.00420803
- Kassil’ VL, Zolotokrylina ES. Ostryi-respiratornyi distress-sindrom. Moscow: Meditsina, 2003. P. 22–24, 139–140.
- MacLaren G. When to initiate ECMO with low likelihood of success. Crit Care. 2018;22(1):12–14. doi: 10.1186/s13054-018-2162-2
- Gupta M, Shanley TP, Moler FW. Extracorporeal life support for severe respiratory failure in children with immune compromised conditions. Pediatr Crit Care Med. 2008;9(4):380–385. doi: 10.1097/PCC.0b013e318172d54d
- Friedrich G, Mausser G, Gugatschka M. Die Jet-Ventilation in der operativen LaryngologieJet ventilation in laryngotracheal surgery. HNO. 2008;56(12):1197–1206. doi: 10.1007/s00106-008-1725-y
- Yaroshetsky AI, Gritsan AI, Avdeev SN, et al. Diagnostics and intensive therapy of Acute Respiratory Distress Syndrome (Clinical guidelines of the Federation of Anesthesiologists and Reanimatologists of Russia). Russian Journal of Anaesthesiology and Reanimatology. 2020;(2):5–39. (In Russ.) doi: 10.17116/anaesthesiology20200215
- Ranieri V, Rubenfeld G. Acute respiratory distress syndrome: the Berlin definition. JAMA. 2012;307(23):2525–2533. doi: 10.1001/jama.2012.5669
- Cheifetz IM. Pediatric ARDS. Respir Care. 2017;62(6):718–731. doi: 10.4187/respcare.05591
- Khemani RG, Smith L, Zimmerman J, et al. Pediatric acute respiratory distress syndrome: Definition, incidence, and epidemiology: Proceedings from the Pediatric Acute Lung Injury Consensus Conference. Pediatr Crit Care Med. 2015;16(5):S23–S40. doi: 10.1097/PCC.0000000000000432
- Murray JF, Matthay M, Luce J, et al. An expanded definition of the adult respiratory distress syndrome. Respir Care. 1988;33(12):1131–1137. doi: 10.1164/ajrccm/138.3.720
- Yaroshetskiy AI, Protsenko DN, Ignatenko OV, et al. Significance of static pressure-volume loop and lung computed tomography for differential diagnostics of parenchymal lung failure. Russian Journal of Anaesthesiology and Reanimatology. 2014;(2):21–26. (In Russ.)
- Levy MM, Evans LE, Rhodes A. The Surviving Sepsis Campaign Bundle: 2018 update. Intensive Care Med. 2018;44(6):925–928. doi: 10.1007/s00134-018-5085-0
- Rhodes A, Evans LE, Alhazzani W, et al. Surviving Sepsis Campaign: International Guidelines for Management of Sepsis and Septic Shock: 2016. Intensive Care Med. 2017;43(3):304–377. doi: 10.1007/s00134-017-4683-6
- Matics TJ, Sanchez-Pinto LN. Adaptation and Validation of a Pediatric Sequential Organ Failure Assessment Score and Evaluation of the Sepsis-3 Definitions in Critically Ill Children. JAMA Pediatr. 2017;171(10):e172352. doi: 10.1001/jamapediatrics.2017.2352
- Rice TW, Wheeler AP, Bernard GR, et al. Comparison of the SpO2/FIO2 ratio and the PaO2/FIO2 ratio in patients with acute lung injury or ARDS. Chest. 2007;132(2):410–417. doi: 10.1378/chest.07-0617
- Khemani RG, Patel NR, Bart RD, et al. Comparison of the pulse oximetric saturation/fraction of inspired oxygen ratio and the PaО2/fraction of inspired oxygen ratio in children. Chest. 2009;135(3):662–668. doi: 10.1378/chest.08-2239
- Marcelo BP, Maureen OM, Slutsky AS. Driving pressure and survival in the acute respiratory distress syndrome. N Eng J Med. 2014;372(8):747–755. doi: 10.1056/NEJMsa1410639
- Shkolnikova MA, Miklashevich IM, Kalinin LA. QT interval and heart rate in 4,415 healthy Russian children aged 0–17 years. Eur Heart J. 2007;28(1):407–408. doi: 10.1093/eurheartj/ehm418
- Slutsky AS, Drazen JM. Ventilation with small tidal volumes. N Eng J Med. 2002;347(9):630–631. doi: 10.1056/NEJMp020082
- Laffey JG, Bellani G, Pham T, et al. Potentially modifiable factors contributing to outcome from acute respiratory distress syndrome: the LUNG SAFE study. Intensive Care Med. 2016;42(12):1865–1876. doi: 10.1007/s00134-016-4571-5
- Kassil’ VL, Vyzhigina MA. Iskusstvennaya ventilyatsiya legkikh pri ORDS. In: Kassil’ VL, editor. Iskusstvennaya i vspomogatel’naya ventilyatsiya legkikh: rukovodstvo dlya vrachei. Moscow: Meditsina, 2004. P. 377–388.
- Kontorovich MB, Zislin BD. Monitoring parametrov mekhaniki dykhaniya pri iskusstvennoi ventilyatsii legkikh. Intensive Care Journal. 2008;(2):39–45. Available at: https://icj.ru/journal/number-2-2008/162-monitoring-parametrov-mehaniki-dyhaniya-pri-iskusstvennoy-ventilyacii-legkih.html. (In Russ.)
- Kontorovich MB, Zislin BD. Monitoring davleniya v dykhatel’nykh putyakh pri vysokochastotnoi struinoi ventilyatsii legkikh. Intensive Care Journal. 2007;(1):35–37. Available at: https://icj.ru/journal/number-1-2007/101-monitoring-davleniya-v-dyhatelnyh-putyah-pri-vysokochastotnoy-struynoy-ventilyacii-legkih.html. (In Russ.)
- Тchistуakov AV, Zislin BD, Kontorovitch MB, Markov AV. New technologies in monitoring of respiratory mechnanics during high-frequency jet artificial lung ventilation. Journal of new medical technologies. 2008;15(2):208–210. URL: http://www.medtsu.tula.ru/VNMT/Bulletin/2008/08B2.pdf. (In Russ.)
- Kassil’ VL, Vyzhigina MA, Leskin GS. Iskusstvennaya i vspomogatel’naya ventilyatsiya legkikh. Moscow: Meditsina, 2004. P. 125–131. (In Russ.)
- Leithner C, Podolsky A, Globits S. Magnetic resonans imaging of the heart during PEEP ventilation in normal subjects. Crit Care Resusc. 1994;22(3):426–432. doi: 10.1097/00003246-199403000-00012
- Mitaka C, Nagura T. Two-dimensionnal echocardiographic evaluation of inferior vena cava,right ventricl e,and left ventricle during positive-pressure ventilation with varying levels of positive end-expiratory pressure. Crit Care Med. 1989;17(3):205–210. doi: 10.1097/00003246-198903000-00001
- Vyzhigina MA, Mizikov VM, Sandrikov VA, et al. Respiratory support in anaesthetic management for thoracic surgery and their comparative characteristics: over 2000 anaesthesia experience. Russian Journal of Anaesthesiology and Reanimatology. 2013;(2):34–40. (In Russ.)
- Alekseev AV, Vyzhigina MA, Parshin VD, et al. Review of the current methods of respiratory support for tracheal surgery. Russian Journal of Anaesthesiology and Reanimatology. 2016;61(5):391–395. (In Russ.) doi: 10.18821/0201-7563-2016-61-5-391-395
- Schuster S, Erbel R, Weilemann LS. Hemodynamics during PEEP ventilation in patients with severe left ventricular failure studied by transesophageal echocardiography. Chest. 1990;97(5):1181–1189. doi: 10.1378/chest.97.5.1181
- Som A, Maitra S, Bhattacharjee S. Goal directed fluid therapy decreases postoperative morbidity but not mortality in major non-cardiac surgery: a meta-analysis and trial sequential analysis of randomized controlled trials. J Anesth. 2017;31(1):66–81. doi: 10.1007/s00540-016-2261-7
补充文件
