儿科泌尿学中的尿代谢组研究。文献综述
- 作者: Kuzovleva G.I.1,2, Vlasenko E.Y.1, Maltseva L.D.1, Morozova O.L.1
-
隶属关系:
- I.M. Sechenov First Moscow State Medical University (Sechenov University)
- Speransky Children’s Hospital No. 9
- 期: 卷 13, 编号 4 (2023)
- 页面: 551-563
- 栏目: Reviews
- URL: https://bakhtiniada.ru/2219-4061/article/view/249864
- DOI: https://doi.org/10.17816/psaic1546
- ID: 249864
如何引用文章
全文:
详细
代谢组学是一门研究小分子(50至5000Da)的科学,这些小分子是细胞内实现新陈代谢过程并维持其生命活动的结果。尿代谢组研究是小儿泌尿外科诊断泌尿系统各种细胞早期损伤的一个前景广阔的领域,可以对生物标志物组或其频谱进行研究,从而改进对现有疾病的检测,多维分析将提供更高的诊断准确性。这项研究旨在总结目前已知的尿液代谢组及其在先天性泌尿系统畸形伴有肾发育不良并导致急性肾损伤或慢性肾病时的变化情况。我们使用以下数据库进行了文献检索:PubMed、Embase 和 Google Scholar。这篇综述介绍了代谢组学分析为诊断和监测泌尿系统器官和组织结构的损伤、确定病理进展的预测因子以及个性化医疗决策策略提供新的质量水平的可能性。介绍了这种方法的局限性,包括设备昂贵、需要培训高素质人才以及难以解释结果。尿代谢组的研究在小儿泌尿系畸形的诊断和适时合理治疗策略的选择上是非常有前景的。
作者简介
Galina I. Kuzovleva
I.M. Sechenov First Moscow State Medical University (Sechenov University); Speransky Children’s Hospital No. 9
编辑信件的主要联系方式.
Email: dr.gala@mail.ru
ORCID iD: 0000-0002-5957-7037
SPIN 代码: 7990-4317
MD, Cand. Sci. (Med.)
俄罗斯联邦, Moscow; MoscowEkaterina Yu. Vlasenko
I.M. Sechenov First Moscow State Medical University (Sechenov University)
Email: vlasenko.ekaterina@icloud.com
ORCID iD: 0000-0002-3138-8314
SPIN 代码: 8290-0356
俄罗斯联邦, Moscow
Larisa D. Maltseva
I.M. Sechenov First Moscow State Medical University (Sechenov University)
Email: lamapost@mail.ru
ORCID iD: 0000-0002-4380-4522
SPIN 代码: 7725-2499
MD, Cand. Sci. (Med.)
俄罗斯联邦, MoscowOlga L. Morozova
I.M. Sechenov First Moscow State Medical University (Sechenov University)
Email: morozova_ol@list.ru
ORCID iD: 0000-0003-2453-1319
SPIN 代码: 1567-4113
MD, Dr. Sci. (Med.)
俄罗斯联邦, Moscow参考
- Patti GJ, Yanes O, Siuzdak G. Metabolomics: the apogee of the omictriology. Nat Rev Mol Cell Biol. 2012;13(4):263–269. doi: 10.1038/nrm3314
- Wishart DS. Metabolomics for investigating physiological and pathophysiological processes. Physiol Rev. 2019;99(4):1819–1875. doi: 10.1152/physrev.00035.2018
- Abbiss H, Maker GL, Trengove RD. Metabolomics approaches for the diagnosis and understanding of kidney diseases. Metabolites. 2019;9(2):34–55. doi: 10.3390/metabo9020034
- Khamis MM, Adamko DJ, El-Aneed A. Mass spectrometric based approaches in urine metabolomics and biomarker discovery. Mass Spectrom Rev. 2017;36(2):115–134. doi: 10.1002/mas.21455
- Zhang A, Sun H, Wu X, Wang X. Urine metabolomics. Clin Chim Acta. 2012;414:65–69. doi: 10.1016/j.cca.2012.08.016
- Chiu C-Y, Yeh K-W, Lin G, et al. Metabolomics reveals dynamic metabolic changes associated with age in early childhood. PLoS One. 2016;11(2):e0149823. doi: 10.1371/journal.pone.0149823
- Stankovic AK, DiLauri E. Quality improvements in the preanalytical phase: Focus on urine specimen workflow. Clin Lab Med. 2008;28(2):339–350. doi: 10.1016/j.cll.2007.12.011
- Wang X, Gu H, Palma-Duran SA, et al. Influence of storage conditions and preservatives on metabolite fingerprints in urine. Metabolites. 2019;9(10):203–215. doi: 10.3390/metabo9100203
- Delanghe J, Speeckaert M. Preanalytical requirements of urinalysis. Biochem Med (Zagreb). 2014;24(1):89–104. doi: 10.11613/BM.2014.011
- Rodríguez-Morató J, Pozo ÓJ, Marcos J. Targeting human urinary metabolome by LC-MS/MS: a review. Bioanalysis. 2018;10(7):489–516. doi: 10.4155/bio-2017-0285
- Dunn WB, Broadhurst D, Ellis DI, et al. A GC-TOF-MS study of the stability of serum and urine metabolomes during the UK Biobank sample collection and preparation protocols. Int J Epidemiol. 2008;37(S1):i23–i30. doi: 10.1093/ije/dym281
- Laparre J, Kaabia Z, Mooney M, et al. Impact of storage conditions on the urinary metabolomics fingerprint. Anal Chim Acta. 2017;951:99–107. doi: 10.1016/j.aca.2016.11.055
- Chaleckis R, Meister I, Zhang P, Wheelock CE. Challenges, progress and promises of metabolite annotation for LC-MS-based metabolomics. Curr Opin Biotechnol. 2019;55:44–50. doi: 10.1016/j.copbio.2018.07.010
- Bartel J, Krumsiek J, Theis FJ. Statistical methods for the analysis of high-throughput metabolomics data. Comput Struct Biotechnol J. 2013;4(5):e201301009. doi: 10.5936/csbj.201301009
- Wishart DS, Knox C, Guo AC, et al. HMDB: a knowledgebase for the human metabolome. Nucleic Acids Res. 2009;37(S1):D603–D610. doi: 10.1093/nar/gkn810
- Smith CA, O’Maille G, Want EJ, et al. METLIN: a metabolite mass spectral database. Ther Drug Monit. 2005;27(6):747–751. doi: 10.1097/01.ftd.0000179845.53213.39
- Bouatra S, Aziat F, Mandal R, et al. The human urine metabolome. PLoS One. 2013;8(9):e73076. doi: 10.1371/journal.pone.0073076
- Dai X, Shen L. Advances and trends in omics technology development. Front Med (Lausanne). 2022;9:911861. doi: 10.3389/fmed.2022.911861
- Bukharina AB, Fedulkina AO, Demidova KN, et al. Omics technologies in screening for kidney disease in children with congenital uropathy. Annals of the Russian academy of medical sciences. 2022;77(5):354–361. (In Russ.) doi: 10.15690/vramn2107
- Emwas A-H, Roy R, McKay RT, et al. NMR spectroscopy for metabolomics research. Metabolites. 2019;9(7):123. doi: 10.3390/metabo9070123
- Thomas SN, French D, Jannetto PJ, et al. Liquid chromatography–tandem mass spectrometry for clinical diagnostics. Nat Rev Methods Primers. 2022;2(1):96. doi: 10.1038/s43586-022-00175-x
- Fiehn O. Metabolomics by gas chromatography-mass spectrometry: combined targeted and untargeted profiling. Curr Protoc Mol Biol. 2016;114(1):30.4.1–30.4.32. doi: 10.1002/0471142727.mb3004s114
- Jokiniitty E, Hokkinen L, Kumpulainen P, et al. Urine headspace analysis with field asymmetric ion mobility spectrometry for detection of chronic kidney disease. Biomark Med. 2020;14(8):629–638. doi: 10.2217/bmm-2020-0085
- Fitzgerald J, Fenniri H. Cutting edge methods for non-invasive disease diagnosis using E-tongue and E-nose devices. Biosensors (Basel). 2017;7(4):59. doi: 10.3390/bios7040059
- Teruya T, Goga H, Yanagida M. Aging markers in human urine: A comprehensive, non-targeted LC-MS study. FASEB Bioadv. 2020;2(12):720–733. doi: 10.1096/fba.2020-00047
- Scalabre A, Jobard E, Demède D, et al. Evolution of newborns’ urinary metabolomic profiles according to age and growth. J Proteome Res. 2017;16(10):3732–3740. doi: 10.1021/acs.jproteome.7b00421
- Liu X, Tian X, Qinghong S, et al. Characterization of LC-MS based urine metabolomics in healthy children and adults. Peer J. 2022;10:e13545. doi: 10.7717/peerj.13545
- Reusch JEB, Kumar TR, Regensteiner JG, Zeitler PS. Conference participants. Identifying the critical gaps in research on sex differences in metabolism across the life span. Endocrinology. 2018;159(1):9–19. doi: 10.1210/en.2017-03019
- Tang WHW, Wang Z, Levison BS, et al. Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk. N Engl J Med. 2013;368(17):1575–1584. doi: 10.1056/NEJMoa1109400
- Koeth RA, Wang Z, Levison BS, et al. Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat Med. 2013;19(5):576–585. doi: 10.1038/nm.3145.
- Wilson Tang WH, Wang Z, Kennedy DJ, et al. Gut microbiota-dependent trimethylamine N-oxide (TMAO) pathway contributes to both development of renal insufficiency and mortality risk in chronic kidney disease. Circ Res. 2015;116(3):448–455. doi: 10.1161/CIRCRESAHA.116.305360
- Liu X, Yin P, Shao Y, et al. Which is the urine sample material of choice for metabolomics-driven biomarker studies? Anal Chim Acta. 2020;1105:120–127. doi: 10.1016/j.aca.2020.01.028
- Liu Z, Xia B, Saric J, et al. Effects of vancomycin and ciprofloxacin on the NMRI mouse metabolism. J Proteome Res. 2018;17(10):3565–3573. doi: 10.1021/acs.jproteome.8b00583
- Kim AHJ, Lee Y, Kim E, et al. Assessment of oral vancomycin-induced alterations in gut bacterial microbiota and metabolome of healthy men. Front Cell Infect Microbiol. 2021;11:629438. doi: 10.3389/fcimb.2021.629438
- Rodriguez MM. Congenital anomalies of the kidney and the urinary tract (CAKUT). Fetal PediatrPathol. 2014;33(5-6):293–320. doi: 10.3109/15513815.2014.959678
- Macioszek S, Wawrzyniak R, Kranz A, et al. Comprehensive metabolic signature of renal dysplasia in children. A multiplatform metabolomics concept. Front Mol Biosci. 2021;8:665661. doi: 10.3389/fmolb.2021.665661
- Xu X, Nie S, Zhang A, et al. Acute kidney injury among hospitalized children in China. Clin J Am Soc Nephrol. 2018;13(12):1791–1800. doi: 10.2215/CJN.00800118
- Sutherland SM, Ji J, Sheikhi FH, et al. AKI in hospitalized children: Epidemiology and clinical associations in a national cohort. Clin J Am Soc Nephrol. 2013;8(10):1661–1669. doi: 10.2215/CJN.00270113
- Andreoli SP. Acute kidney injury in children. Pediatr Nephrol. 2009;24(2):253–263. doi: 10.1007/s00467-008-1074-9
- Cleto-Yamane TL, Gomes CLR, Suassuna JHR, Nogueira PK. Acute kidney injury epidemiology in pediatrics. J Bras Nefrol. 2019;41(2):275–283. doi: 10.1590/2175-8239-JBN-2018-0127
- Mammen C, Abbas AA, Skippen P, et al. Long-term risk of CKD in children surviving episodes of acute kidney injury in the intensive care unit: A prospective cohort study. Am J Kidney Dis. 2012;59(4):523–530. doi: 10.1053/j.ajkd.2011.10.048
- Beger RD, Holland RD, Sun J, et al. Metabonomics of acute kidney injury in children after cardiac surgery. Pediatr Nephrol. 2008;23(6):977–984. doi: 10.1007/s00467-008-0756-7
- Muhle-Goll C, Eisenmann P, Luy B, et al. Urinary NMR profiling in pediatric acute kidney injury — a pilot study. Int J Mol Sci. 2020;21(4):1187. doi: 10.3390/ijms21041187
- Viau A, El Karoui K, Laouari D, et al. Lipocalin 2 is essential for chronic kidney disease progression in mice and humans. J Clin Invest. 2010;120(11):4065–4076. doi: 10.1172/JCI42004
- Harambat J, van Stralen KJ, Kim JJ, Tizard EJ. Epidemiology of chronic kidney disease in children. Pediatr Nephrol. 2012;27(3):363–373. doi: 10.1007/s00467-011-1939-1
- Becherucci F, Roperto RM, Materassi M, Romagnani P. Chronic kidney disease in children. Clin Kidney J. 2016;9(4):583–591. doi: 10.1093/ckj/sfw047
- Vivante A, Hildebrandt F. Exploring the genetic basis of early-onset chronic kidney disease. Nat Rev Nephrol. 2016;12(3):133–146. doi: 10.1038/nrneph.2015.205
- Martens-Lobenhoffer J, Bode-Böger SM. Amino acid N-acetylation: Metabolic elimination of symmetric dimethylarginine as symmetric Nα-acetyldimethylarginine, determined in human plasma and urine by LC–MS/MS. J Chromatogr B Analyt Technol Biomed Life Sci. 2015;975:59–64. doi: 10.1016/j.jchromb.2014.11.009
- Benito S, Sánchez A, Unceta N, et al. LC-QTOF-MS-based targeted metabolomics of arginine-creatine metabolic pathway-related compounds in plasma: application to identify potential biomarkers in pediatric chronic kidney disease. Anal Bioanal Chem. 2016;408(3):747–760. doi: 10.1007/s00216-015-9153-9
- Zhang W, Miikeda A, Zuckerman J, et al. Inhibition of microbiota-dependent TMAO production attenuates chronic kidney disease in mice. Sci Rep. 2021;11(10):518. doi: 10.1038/s41598-020-80063-0
- Wang Y-N, Ma S-X, Chen Y-Y, et al. Chronic kidney disease: Biomarker diagnosis to therapeutic targets. Clin Chim Acta. 2019;499:54–63. doi: 10.1016/j.cca.2019.08.030
- Mattoo TK. Vesicoureteral reflux and reflux nephropathy, advances in chronic kidney disease. Adv Chronic Kidney Dis. 2011;18(5):348–354. doi: 10.1053/j.ackd.2011.07.006
- Läckgren G, Cooper CS, Neveus T, Kirsch AJ. Management of vesicoureteral reflux: What have we learned over the last 20 years? Front Pediatr. 2021;9:650326. doi: 10.3389/fped.2021.650326
- Vitko D, McQuaid JW, Gheinani AH, et al. Urinary tract infections in children with vesicoureteral reflux are accompanied by alterations in urinary microbiota and metabolome profiles. Eur Urol. 2022;81(2):151–154. doi: 10.1016/j.eururo.2021.08.022
- Riccio S, Valentino MS, Passaro AP, et al. New insights from metabolomics in pediatric renal diseases. Children (Basel). 2022;9(1):118. doi: 10.3390/children9010118
- Morozova O, Morozov D, Pervouchine D, et al. Urinary biomarkers of latent inflammation and fibrosis in children with vesicoureteral reflux. Int Urol Nephrol. 2020;52(4):603–610. doi: 10.1007/s11255-019-02357-1
补充文件
