超声弹性成像在外科疾病和损伤患者中的诊断潜力。系统综述

封面

如何引用文章

全文:

详细

近年来,超声弹性成像技术已被引入临床实践。因为该设备的可用性较低,使用时间有限,所以专家们对该技术潜力的知识不足。本综述旨在根据已发表科学研究的系统分析结果,确定超声弹性成像技术在外科疾病和损伤患者诊断中的重要性。我们在PubMed、Google Scholar、eLibrary数据库和其他信息来源(如《Journal of Pediatric Surgery》、《俄罗斯儿童外科、麻醉学和复苏学通报》、《儿童外科学》和《SonoAce Ultrasound》等期刊)中搜索了2016年至2022年期间的出版物。总样本量为7040个来源。根据PRISMA标准,32篇出版物被纳入分析。分析结果以“外科疾病”和“损伤”为标题。在“外科疾病”(27篇出版物)中,与体积肿块有关的研究居多。只有极少数的研究有血管并发症和宫外孕有关。有3篇文章符合“损伤”的定义。该方法的特异度介于四分位距[Q1 77至Q3 95],国际单位为88.1,灵敏度介于四分位距[Q1 81至Q3 94],国际单位为85.5。弹性成像的优势体现在该方法在检测肩袖断裂预示因素方面的特异度上,与B型相比,分别为96.7%和61.2-62.5%。弹性成像对胰腺囊肿的特异度达到75.0%,而B型的仅为40.0%。在淋巴结转移性病变中,弹性成像(84.0%)比灰度检查(69.0%)更具优势。在存在冈上肌肌腱损伤的情况下,弹性成像比常规超声检查有效15%。弹性成像技术将前列腺癌诊断的特异度从45.0%提高到89.0%。

作者简介

Anastasiya V. Belyaeva

Veltischev Research and Clinical Institute for Pediatrics and Pediatric Surgery, Pirogov Russian National Research Medical University

编辑信件的主要联系方式.
Email: avbelyaeva1@gmail.com
ORCID iD: 0000-0002-4899-904X
SPIN 代码: 4515-6952
Researcher ID: HMV-2047-2023

MD, Cand. Sci. (Med)., Research Associate

俄罗斯联邦, Moscow

Olga A. Belyaeva

G.N. Speransky Children’s Hospital No. 9

Email: belyaeva300@rambler.ru
ORCID iD: 0000-0001-9738-9603
SPIN 代码: 1968-4120

MD, Cand. Sci. (Med.)

俄罗斯联邦, Moscow

Vladimir M. Rozinov

Veltischev Research and Clinical Institute for Pediatrics and Pediatric Surgery, Pirogov Russian National Research Medical University

Email: rozinov@inbox.ru
ORCID iD: 0000-0002-9491-967X
SPIN 代码: 2770-3752

MD, PhD, Dr. Sci. (Med.), Professor, Deputy Director

俄罗斯联邦, Moscow

参考

  1. Izranov VА, Kazantseva NV, Martinovich МV, et al. Physical foundations of liver elastography. IKBFU’s Vestnik. Natural and medical sciences. 2019;(2):69–87. (In Russ.)
  2. Izranov VА, Kazantseva NV, Martinovich МV, et al. Liver elastography techniques and the problems of Russian terminology. IKBFU’s Vestnik. Natural and medical sciences. 2019;(1):63–78. (In Russ.)
  3. Zykin BI, Postnova NA, Medvedev ME. Ehlastografiya: anatomiya metoda. Promeneva dіagnostika, promeneva terapіya. 2012;(2):107–113. (In Russ.)
  4. Ophir J, Céspedes I, Ponnekanti H, et al. Elastography: A quantitative method for imaging the elasticity of biological tissues. Ultrasonic Imaging. 1991;13(2):111–134. doi: 10.1177/016173469101300201
  5. Shiina T, Nightingale KR, Palmeri ML, et al. WFUMB guidelines and recommendations for clinical use of ultrasound elastography: Part 1: basic principles and terminology. Ultrasound Med Biol. 2015;41(5):1126–1147. doi: 10.1016/j.ultrasmedbio.2015.03.009
  6. Dibina TV, Drozdov ES, Koshel AP, Latypov VR. Use of ultrasonic elastography in the differential diagnosis of pancreatic cystic lesions. Bulletin of Siberian Medicine. 2018;17(3):45–52. (In Russ.) doi: 10.20538/1682-0363-2018-3-45–52
  7. Khasanov MZ, Tukhbatullin MG, Laryukov AV, Galyavi RA. Possibilities of ultrasonic shear wave elastography in the diagnosis of benign prostatic hyperplasia. Practical medicine. 2016;(9):65–68. (In Russ.)
  8. Mumoli N, Mastroiacovo D, Giorgi-Pierfranceschi M, et al. Ultrasound elastography is useful to distinguish acute and chronic deep vein thrombosis. J Thromb Haemost. 2018;16(12):2482–2491. doi: 10.1111/jth.14297
  9. Krasnova IA, Shishkina TYu, Aksenova VB. Ultrasound strain elastography — criteria for diagnosis of tubal pregnancy. Ultrasound and Functional Diagnostics. 2017;(3):32–46. (In Russ.) doi: 10.24835/1607-0771-2017-3-32-46
  10. Wei H, Lu Y, Ji Q, et al. The application of conventional us and transthoracic ultrasound elastography in evaluating peripheral pulmonary lesions. Exp Ther Med. 2018;16(2):1203–1208. doi: 10.3892/etm.2018.6335
  11. Liu Y, Zhen Y, Zhang X, et al. Application of transthoracic shear wave elastography in evaluating subpleural pulmonary lesions. Eur J Radiol Open. 2021;8:100364. doi: 10.1016/j.ejro.2021.100364
  12. Gazhonova VЕ, Emelianenko MB, Onishchenko MP. Ultrasound predictors of rotator cuff tears in patients with subacromial impingement syndrome of the shoulder. Kremlin Medicine Journal. 2018;2(4):26–31. (In Russ.) doi: 10.26269/7g34-kf19
  13. Gazhonova VЕ, Emelianenko MB, Onishchenko MP, et al. Optimizatsiya luchevogo algoritma pri patologii sukhozhiliya nadostnoi myshtsy plechevogo sustava. Kremlin Medicine Journal. 2017;(3):35–44. (In Russ.)
  14. Kormilina AR, Tukhbatullin MG. Ultrasonic shear wave elastography in the assessment of bone callus stiffness. Russian electronic journal of radiology. 2020;10(2):122–128. (In Russ.) doi: 10.21569/2222-7415-2020-10-2-122-128
  15. Pomortsev AV, Tokarenko OS. Diagnostic value of multiparametric ultrasound and the EU-TIRADS system for differentiation of focal thyroid lesions. Innovative Medicine of Kuban. 2020;(3):29–37. (In Russ.) doi: 10.35401/2500-0268-2020-19-3-29-37
  16. Timofeeva LA, Tukhbatullin MG, Sencha AN. Ultrasonic elastography in the differential diagnosis of thyroid nodular patholog. Kuban Scientific Medical Bulletin. 2019;26(4):45–55. (In Russ.) doi: 10.25207/1608-6228-2019-26-4-45-55
  17. Katrich AN, Okhotina AV, Shamakhyan KA, Ryabin NS. Ultrasound shear wave elastography (SWE) for thyroid gland focal lesion diagnosis. Kuban Scientific Medical Bulletin. 2017;1(1):53–59. (In Russ.) doi: 10.25207/1608-6228-2017-1-53-59
  18. Katrich AN, Okhotina AV, Kvasova AA, Ryabin NS. Strain elastography efficiency for thyroid gland cancer diagnosis. Innovative Medicine of Kuban. 2017;5(1):17–22. (In Russ.)
  19. Mitkov VV, Ivanishina TV, Mitkova MD. Shear wave elastography in multiparametric ultrasound of malignant thyroid nodules. Ultrasound and Functional Diagnostics. 2016;(1):13–28. (In Russ.)
  20. Kyriakidou G, Friedrich-Rust M, Bon D, et al. Comparison of strain elastography, point shear wave elastography using acoustic radiation force impulse imaging and 2D-shear wave elastography for the differentiation of thyroid nodules. PLoS One. 2018;13(9):e0204095. doi: 10.1371/journal.pone.0204095
  21. Hairu L, Yulan P, Yan W, et al. Elastography for the diagnosis of high-suspicion thyroid nodules based on the 2015 American Thyroid Association guidelines: a multicenter study. BMC Endocr Disord. 2020;20(1):43. doi: 10.1186/s12902-020-0520-y
  22. He Y, Wang XY, Hu Q, et al. Value of contrast-enhanced ultrasound and acoustic radiation force impulse imaging for the differential diagnosis of benign and malignant thyroid nodules. Front Farmacol. 2018;9:1363. doi: 10.3389/fphar.2018.01363
  23. Kovaleva EV, Danzanova TYu, Sinyukova GT, et al. Evaluation of the possibilities of shear wave elastography for differentiation of lymphomatous and reactive changes of superficial lymph nodes. Oncohematology. 2020;15(1):59–64. (In Russ.) doi: 10.17650/1818-8346-2020-15-1-59-64
  24. Lezhnev DA, Vasilyev AYu, Egorova EA, et al. Examination of peripheral lymph nodes using shear wave elastography in patients with head and neck cancer. Siberian journal of oncology. 2019;18(3):5–13. (In Russ.) doi: 10.21294/1814-4861-2019-18-3-5-13
  25. Kabin YuV, Kostash OV, Gromov AI, et al. Shear wave elastography in the diagnosis of metastatic lesions of peripheral lymph nodes. Radiology – Practice. 2019;(5):18–28. (In Russ.)
  26. Korobko VF, Lukach EhV, Serezhko YuA Sravnitel’naya kharakteristika metodov UZI v diagnostike metastaticheskikh porazhenii limfouzlov pri rake glotki i gortani. Otorinolaryngology. Eastern Europe. 2018;8(3):288–293. (In Russ.)
  27. Kostash OV, Kabin YuV, Smekhov NA, et al. Shear wave elastography in recognition of metastatic axillary lymph nodes in women with breast cancer. Ultrasound and Functional Diagnostics. 2017;(3):22–31. (In Russ.) doi: 10.24835/1607-0771-2017-3-22-31
  28. Kostash OV, Kabin YuV, Smekhov NA, et al. Metastatic peripheral lymph nodes in cutaneous malignant melanoma: role of shear wave elastography. Ultrasound and Functional Diagnostics. 2017;(6):25–35. (In Russ.) doi: 10.24835/1607-0771-2017-6-25-35
  29. Savelyeva NA, Kosova AL. Value of multiparametric ultrasound with strain elastography in peripheral lymph nodes metastases diagnosis. Ultrasound and Functional Diagnostics. 2016;(4):26–37. (In Russ.)
  30. Kamalov YR, Kryzhanovskaya EYu, Fisenco EP, et al. Acoustic radiation force impulse quantification/imaging in differential diagnosis of benign and malignant liver tumors. Ultrasound and Functional Diagnostics. 2021;(1):9–31. (In Russ.) doi: 10.24835/1607-0771-2021-1-9-31.
  31. Agaeva ZA. Differentsialnaya diagnostika ochagovykh obrazovanii pecheni s primeneniem innovatsionnoi ultrazvukovoi metodiki akusticheskoi impulsno-volnovoi ehlastografii (ARFI). Veles. 2016;(81):26–39. (In Russ.)
  32. Feoktistova EV, Sugak AB, Izotova OYu, et al. ARFI-elastography in differential diagnosis of solid lesions in children. Ultrasound and Functional Diagnostics. 2016;(1):57–69. (In Russ.)
  33. Shimanets SV, Karman AV, Zakharava VA, et al. Ultrasound shear wave elastography with multiparametric magnetic resonance imaging in planning of prostate biopsy. Vestnik of SSMA. 2020;19(1):161–171. (In Russ.)
  34. Khasanov MZ, Tukhbatullin MG, Savelyeva NA. The role of ultrasound shear wave elastography in the diagnosis of prostate cancer. Practical medicine. 2017;(7):156–159. (In Russ.)
  35. Amosov AV, Krupinov GE, Lerner YuV, et al. Ultrasound shear wave elastography in prostate cancer diagnosis (retrospective study). Ultrasound and Functional Diagnostics. 2016;(4):10–17. (In Russ.)
  36. Alymov YuV. Evaluation of capability of ultrasound with elastometry and elastography for diagnosis of subclinical regional metastases of cancer of the oral mucosa. Head and Neck Tumors (HNT). 2017;7(1):31–41. (In Russ.) doi: 10.17650/2222-1468-2017-7-1-31-41
  37. Watanabe T, Yamaguchi T, Okuno T, et al. Utility of B-mode, color Doppler and elastography in the diagnosis of breast cancer: Results of the CD-CONFIRM multicenter study of 1351 breast solid masses. Ultrasound Med Biol. 2021;47(11):3111–3121. doi: 10.1016/j.ultrasmedbio.2021.07.009

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Frequency distribution of thematic sources in various databases depending on the year of publication

下载 (126KB)
3. Fig. 2. Block diagram of the staged selection of publications for a systematic review of the information content of ultrasound elastography (checklist)

下载 (335KB)

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».