水刀技术在成人和儿童的治疗中的应用。文献综述

封面

如何引用文章

全文:

详细

每年都新医疗设备被引入外科医生的实践中,以改善手术方式并减少术后并发症的风险。用水刀外科学是这些方式中的一种。

该研究的目的是分析关于现代外科实践中各分支使用水刀外科设备的经验的医学文献,以及收集关于其有效性的信息,评估其主要优点、缺点和在儿童外科学中的使用前途。 使用PubMed、eLibrary、Web of Science和CyberLeninca数据库对这些出版物进行了搜索和分析。使用了以下关键词来搜索资料:“гидрохирургия”/“hydrosurgery”(用水刀外科学)、 “водоструйные устройства”/“water-jetdevices”(射流抽水装置)、“water-jet hydrodissection”(水射流水分离法)、“water-jetdebridement”(水射流清创术)、 “HybridKnife”、“Erbejet”、“VersaJet”。只有俄文和英文的资料才能被纳入文献审查。文献发表时间为2015年至2022年。我们考虑到在成人和儿童外科学实践中使用水刀器械的经验。根据给定的搜索参数,分析了54篇文章。其中38篇被纳入了该文献综述。其余16篇文章由于病人样本少和研究步骤不完整而被排除。

出版物中提供的数据和对所进行的研究的审查表明,水刀外科治疗方法具有显著的有效性和多用性。在现代外科实践中使用这些方法的优势已被记录在案。这些优点在很大程度上大于缺点。水刀技术提供进行不同难易程度的外科干预的机会。在儿科实践中,水刀技术被用于烧伤医学及伤口、皮肤肿瘤和破坏性肺炎的治疗。对所获得的数据进行了分析后得出结论,用水刀手术方法是治疗各种病症患者的有效现代手术方法之一。这说明了这种方法在儿童外科学中的相关性和更深入研究的必要性。

作者简介

Ruslan S. Molotov

Speranskiy Children’s Municipal Hospital No. 9

Email: zak-zak-zak@mail.ru
ORCID iD: 0000-0003-4301-0711
SPIN 代码: 3880-3475

MD, Cand. Sci. (Med.), pediatric surgeon

俄罗斯联邦, Moscow

Maria M. Chernobabova

I.M. Sechenov First Moscow State Medical University (Sechenov University)

Email: mchernobabova@gmail.com
ORCID iD: 0000-0001-7177-8678
SPIN 代码: 8680-1638

resident pediatric surgeon

俄罗斯联邦, Moscow

Saidhasan M. Bataev

Speranskiy Children’s Municipal Hospital No. 9; Veltischev Research and Clinical Institute for Pediatrics and Pediatric Surgery, Pirogov Russian National Research Medical University

编辑信件的主要联系方式.
Email: khassan-2@yandex.ru
ORCID iD: 0000-0003-0191-1116
SPIN 代码: 1247-1019

Dr. Sci. (Med.), сhief research associate

俄罗斯联邦, Moscow; Moscow

参考

  1. Kerr RS. Surgery in the 2020s: Implications of advancing technology for patients and the workforce. Future Healthc J. 2020;7(1):46–49. doi: 10.7861/fhj.2020-0001
  2. Ponomarenko AA, Shelygin YuA, Rybakov EG. Simultaneous extensive liver resection in patients with colorectal cancer. Russian Journal of Surgery. 2017;22(6):346–352. (In Russ.) doi: 10.18821/1560-9502-2017-22-6-346-352
  3. Yuan M, Yin M, Zhang L, et al. Selective debridement of burn wounds using hydrosurgery system. Int Wound J. 2020;17(2):300–309. doi: 10.1111/iwj.13270
  4. Hyland EJ, D’Cruz R, Menon S, et al. Prospective, randomised controlled trial comparing Versajet™ hydrosurgery and conventional debridement of partial thickness paediatric burns. Burns. 2015;41(4):700–707. doi: 10.1016/j.burns.2015.02.001
  5. Shimada K, Ojima Y, Ida Y, Matsumura H. Efficacy of Versajet hydrosurgery system in chronic wounds: A systematic review. Int Wound J. 2021;18(3):269–278. doi: 10.1111/iwj.13528
  6. Liu J, Ko JH, Secretov E, et al. Comparing the hydrosurgery system to conventional debridement techniques for the treatment of delayed healing wounds: a prospective, randomised clinical trial to investigate clinical efficacy and cost-effectiveness. Int Wound J. 2015;12(4):456–461. doi: 10.1111/iwj.12137
  7. Legemate CM, Goei H, Gostelie OFE, et al. Application of hydrosurgery for burn wound debridement: An 8-year cohort analysis. Burns. 2019;45(1):88–96. doi: 10.1016/j.burns.2018.08.015
  8. Legemate CM, Goei H, Middelkoop E, et al. Long-term scar quality after hydrosurgical versus conventional debridement of deep dermal burns (HyCon trial): study protocol for a randomized controlled trial. Trials. 2018;19(1):239. doi: 10.1186/s13063-018-2599-2
  9. McCombs CT, Cotton C. Efficacy of a disposable hydrodebridement system for debridement of burn wounds: a retrospective case series. J Wound Ostomy Cont Nurs. 2017;44(3):S10.
  10. Onesti MG, Curinga G, Toscani M, Scuderi MN. Jet-Peel: new technique for the treatment of skin imperfections. Dermatologia Clinica. 2006;26(1):19.
  11. Kohli R, Mittal KL, editors. Developments in surface contamination and cleaning, volume 12: Methods for assessment and verification of cleanliness of surfaces and characterization of surface contaminants. Elsevier, 2019. P. 103–127.
  12. Sharoyev TA, Prityko AG. Water jet surgery in operations on liver for malignant tumors in child. Russian Journal of Pediatric Surgery, Anesthesia and Intensive Care. 2012;2(4):38–46. (In Russ.)
  13. Hamaoka M, Kobayashi T, Kuroda S, et al. Experience and outcomes in living donor liver procurement using the water jet scalpel. J Hepatobiliary Pancreat Sci. 2019;26(8):370–376. doi: 10.1002/jhbp.643
  14. Nakano T, Sato C, Sakurai T, et al. Use of water jet instruments in gastrointestinal endoscopy. World J Gastrointest Endosc. 2016;8(3):122–127. doi: 10.4253/wjge.v8.i3.122
  15. Nalbandyan RT, Mitish VA, Beloborodova NV, et al. Hydrosurgical treatment of major wounds of different etiology in children. Russian Journal of Pediatric Surgery. 2017;21(2):84–88. (In Russ.)
  16. Fomin KN, Platonov SA, Soroka VV, et al. Experience of successful surgical treatment deep and extensive purulent-necrotic lesion of the lower limb with the neuroischemic form of the diabetic foot syndrome. Wounds and wound infections. The prof. B.M. Kostyuchenok journal. 2019;6(2):32–39. (In Russ.) doi: 10.25199/2408-9613-2019-6-2-32-39
  17. Bataev SM, Zurbaev NT, Molotov RS, et al. The first experience of the use of hydro-surgical technologies in the treatment of children with pulmatic-pleural complications of destructive pneumonia. Pirogov Russian Journal of Surgery. 2019;(7):15–23. (In Russ.) doi: 10.17116/hirurgia201907115
  18. Bataev SM, Ignatyev RO, Zurbaev NT, et al. Hydrosurgical technology in the treatment of a child with complicated pneumonia secondary to scarlet fever. Pediatrics. Journal named after G.N. Speransky. 2018;97(2):113–117. (In Russ.) doi: 10.24110/0031-403X-2018-97-2-113-117
  19. Bataev SM, Molotov RS, Ignatiev RO, et al. Hydrosurgical sanitation of the pleural cavity in a child with pleural empyema against the background of severe organic brain damage. Russian Journal of Pediatric Surgery, Anesthesia and Intensive Care. 2018;8(4):79–87. (In Russ.) doi: 10.30946/2219–4061–2018–8–4–79–87
  20. Bataev SM, Chogovadze GA, Molotov RS, et al. New technologies in the treatment of a child with pleural empyema after severe catatrauma. Russian Journal of Pediatric Surgery, Anesthesia and Intensive Care. 2018;8(2):75–83. (In Russ.) doi: 10.30946/2219-4061-2018-8-2-75-83
  21. Cristante AF, Rocha ID, MartusMarcon R, Filho TE. Randomized clinical trial comparing lumbar percutaneous hydrodiscectomy with lumbar open microdiscectomy for the treatment of lumbar disc protrusions and herniations. Clinics (Sao Paulo). 2016;71(5):276–280. doi: 10.6061/clinics/2016(05)06
  22. Takaya K, Kato T, Ishii T, et al. Clinical analysis of cultured epidermal autograft (JACE) transplantation for giant congenital melanocytic nevus. Plast Reconstr Surg Glob Open. 2021;9(1):e3380. doi: 10.1097/GOX.0000000000003380
  23. Bhaskar SN, Cutright DE, Gross A, et al. Water jet devices in dental practice. J Periodontol. 1971;42(10):658–664. doi: 10.1902/jop.1971.42.10.658
  24. Bhaskar SN, Cutright DE, Gross A. Effect of water lavage on infected wounds in the rat. J Periodontol. 1969;40(11):671–672. doi: 10.1902/jop.1969.40.11.671
  25. Bhaskar SN, Gutright DE, Hunsuck EE, Gross A. Pulsating water jet devices in debridement of combat wounds. Mil Med. 1971;136(3):264–266. doi: 10.1093/milmed/136.3.264
  26. Hreha P, Hloch S, Magurova D, et al. Water jet technology used in medicine. Nachrichten aus Chemie und Technik. 2010;17(2):237–240. doi: 10.1002/nadc.19690171314
  27. Landewee CA, Campisano F, Yachimski P, et al. 986 The waterjet necrosectomy device (wand): a novel instrument for management of pancreatic necrosis. Gastrointest Endosc. 2020;91(6):AB90. doi: 10.1016/j.gie.2020.03.647
  28. Yachimski P, Landewee CA, Campisano F, et al. The waterjet necrosectomy device for endoscopic management of pancreatic necrosis: design, development, and preclinical testing (with videos). Gastrointest Endosc. 2020;92(3):770–775. doi: 10.1016/j.gie.2020.04.024
  29. Huang R, Yan H, Ren G, et al. Comparison of o-type hybridknife to conventional knife in endoscopic submucosal dissection for gastric mucosal lesions. Medicine (Baltimore). 2016;95(13):e3148. doi: 10.1097/MD.0000000000003148
  30. Mitrakov АA, Kryazhov VA, Smirnova RS, et al. Теrekhov Endoscopic methods for treatment of colorectal neoplasia. Oncology Bulletin of the Volga Region. 2018;9(3):57–61. (In Russ.) doi: 10.32000/2078-1466-2018-3-57-61
  31. Akutsu D, Suzuki H, Narasaka T, et al. Waterjet submucosal dissection of porcine esophagus with the HybridKnife and ERBEJET 2 system: a pilot study. Endosc Int Open. 2017;5(1):E30–E34. doi: 10.1055/s-0042-122335
  32. Manner H, May A, Kouti I, et al. Efficacy and safety of Hybrid-APC for the ablation of Barrett’s esophagus. Surg Endosc. 2016;30(4):1364–1370. doi: 10.1007/s00464-015-4336-1
  33. Saba NF, El-Rayes BF. Esophageal cancer: Prevention, diagnosis and therapy. 2nd editon. Springer, 2019. 244 p. doi: 10.1007/978-3-319-20068-2
  34. Condon A, Muthusamy VR. The evolution of endoscopic therapy for Barrett’s esophagus. Ther Adv Gastrointest Endosc. 2021;14:26317745211051834. doi: 10.1177/26317745211051834.
  35. Babaevskaya DI, Bazarkin AK, Taratkin MS, Enikeev DV. Recent advances in transurethral resection of bladder tumors. Urology Herald. 2022;10(1):96–103. (In Russ.) doi: 10.21886/2308-6424-2022-10-1-96-103
  36. Cheng YY, Sun Y, Li J, et al. Transurethral endoscopic submucosal en bloc dissection for nonmuscle invasive bladder cancer: A comparison study of HybridKnife-assisted versus conventional dissection technique. J Cancer Res Ther. 2018;14(7):1606–1612. doi: 10.4103/jcrt.JCRT_786_17
  37. Coyette M, Elajmi A, Bayet B, Lengelé B. Hydrosurgery, a new therapeutic perspective in early care of giant congenital nevi: a preliminary series of four cases. J Plast Reconstr Aesth Surg. 2014;67(8):1063–1069. doi: 10.1016/j.bjps.2014.04.019
  38. Chumburidze IP, Shtilman MYu, Yavruyan OA. Experience in the treatment of extensive diabetic phlegmon of the foot against the background of affected limb lymphedema. Wounds and wound infections. The prof. B.M. Kostyuchenok journal. 2020;7(2):42–47. (In Russ.) doi: 10.25199/2408-9613-2020-7-2-42-47

补充文件

附件文件
动作
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».