Том 25, № 1 (2023)
- Год: 2023
- Выпуск опубликован: 24.12.2025
- Статей: 6
- URL: https://bakhtiniada.ru/2079-6900/issue/view/24369
Весь выпуск
Математика
Об одном классе самоаффинных множеств на плоскости, заданных шестью гомотетиями
Аннотация
Настоящая работа посвящена классу самоаффинных множеств на плоскости, заданных шестью гомотетиями, центры которых находятся в вершинах правильного шестиугольника P, а коэффициенты гомотетий принадлежат интервалу (0, 1). Отметим, что равенство коэффициентов гомотетий не предполагается. Самоаффинное множество на плоскости представляет собой непустое компактное подмножество, инвариантное относительно рассматриваемого семейства гомотетий. Существование и единственность самоаффинного множества обеспечивает теорема Хатчинсона. Целью данной работы является исследование влияния коэффициентов гомотетий на свойства самоаффинного множества. Для описания самоаффинного множества введены барицентрические координаты на плоскости. Найдены условия, при которых самоаффинное множество является: a) шестиугольником P; b) канторовым множеством в шестиугольнике P. Вычислены размерности Минковского и Хаусдорфа указанных самоаффинных множеств. Получены условия, при выполнении которых мера Лебега самоаффинного множества равна нулю. Приведены примеры самоаффинных множеств из рассматриваемого класса.
519-530
Зацепление как полный инвариант 3-диффеоморфизмов Морса-Смейла
Аннотация
В настоящей работе рассматриваются градиентно-подобные диффеоморфизмы Морса-Смейла, заданные на трехмерной сфере S3. Для таких диффеоморфизмов полный инвариант топологической сопряженности получен в работах Х. Бонатти, В. Гринеса, В. Медведева, Е. Пеку. Он представляет собой класс эквивалентности набора гомотопически нетривиально вложенных торов и бутылок Клейна, вложенных в некоторое замкнутое 3-многообразие, фундаментальная группа которого допускает эпиморфизм в группу Z. Такой инвариант называется схемой градиентно-подобного диффеоморфизма f: S3 → S3. Авторами настоящего исследования выделен класс G диффеоморфизмов, для которых полным инвариантом является более простой с топологической точки зрения объект, а именно зацепление существенных узлов в многообразии S2 x S1. Рассматриваемые диффеоморфизмы определяются тем, что их неблуждающее множество содержит единственный источник, а замыкания устойчивых многообразий седловых точек ограничивают трехмерные шары с попарно не пересекающимися внутренностями. Доказано, что в дополнении к замыканию этих шаров диффеоморфизм класса G содержит в точности одну неблуждающую точку, которая является неподвижным стоком. Установлено, что полным инвариантом топологической сопряженности диффеоморфизмов класса G является пространство орбит неустойчивых седловых сепаратрис в бассейне этого стока. Показано, что пространство орбит представляет собой зацепление нестягиваемых узлов в многообразии S2 x S1 и эквивалентность зацеплений равносильна эквивалентности схем. Также приведена реализация диффеоморфизмов рассмотренного класса по произвольному зацеплению, состоящему из существенных узлов в многообразии S2 x S1.
531-541
Точные решения одной нелинейной счётномерной системы интегро-дифференциальных уравнений
Аннотация
В представленной статье исследуется нелинейная счётномерная система интегро-дифференциальных уравнений, вектором неизвестных у которой является счётное множество функций двух переменных. Эти переменные интерпретируются как пространственная координата и время. Нелинейность рассматриваемой системы сконструирована из двух одновременных свёрток, а именно, из свёртки в смысле функционального анализа и из свёртки в смысле линейного пространства двусторонних последовательностей. Начальное условие для этой системы является двусторонней последовательностью функций одного переменного, определённых на всей действительной оси. Сама система может быть записана в виде одного абстрактного уравнения в линейном пространстве двусторонних последовательностей, разрешённого относительно производной по времени, то есть как динамическая система. Решение этого абстрактного уравнения можно трактовать как аппроксимацию решения нелинейного интегро-дифференциального уравнения, неизвестная функция которого зависит не только от времени, но и от двух пространственных переменных. В работе найдено общее представление точного решения исследуемой системы. Также даны два типа конкретных примеров точных решений этой системы. Первый из них демонстрирует пространственно-временное поведение колебательного характера, а второй тип решений ведёт себя во времени монотонно. В статье приведены типичные графики первых компонент этих решений. Более того, показано, что из этих точных решений в рамках некоторой процедуры можно сгенерировать счётное множество новых точных решений рассматриваемой системы. С точки зрения радиотехники эта процедура совпадает с процедурой повышения частоты дискретизации в цифровой обработке сигналов.
542-553
Решение интегральных уравнений теории линейных антенн методом конечных элементов
Аннотация
Целью работы является построение вычислительной схемы метода конечных элементов применительно к интегральным уравнениям, описывающим распределения токов в тонких проволочных антеннах. В частности, для линейных антенн малой толщины задача может быть сведена к интегральному уравнению Галлена. В качестве метода исследования предпочтение отдано методу конечных элементов, т. к. он обладает достаточно большой гибкостью в плане выбора базисных функций и подборе сетки узлов. Кроме того, данный метод является мощным и эффективным средством решения задач математической физики, который позволяет достаточно точно описать сложные криволинейные границы области определения решения и краевые условия. В работе строится численный метод решения интегрального уравнения Галлена с использованием метода конечных элементов. Согласно предложенной вычислительной схеме, была выстроена программная реализация и проведен сравнительный анализ результатов. Данный подход в целом показал невысокую точность, что, возможно, обусловлено и принадлежностью данной задачи к классу некорректных и в целом вопросом определения границ применимости уравнения Галлена.
554-564
Методы численного анализа некоторых интегральных динамических систем с запаздывающими аргументами
Аннотация
Работа посвящена построению прямых и итерационных численных методов решения функциональных уравнений с наследственными компонентами. Такие уравнения являются удобным аппаратом моделирования динамических систем. В частности, они используются в моделях популяций, структурированных по возрасту с конечной продолжительностью жизни. В работе используются модели на основе интегро-дифференциальных и интегральных уравнений с различного рода запаздывающими аргументами. Для нелинейных уравнений проводится линеаризация операторов по модифицированной схеме Ньютона-Канторовича. Для дискретизации линейных уравнений применяются методы квадратур и простой итерации. Построены итерационный метод решения нелинейного интегро-дифференциального уравнения на полуоси (-∞,0), прямой метод решения задачи восстановления сигнала, итерационные методы решения нелинейного интегрального уравнения Вольтерра с константной задержкой. Для аппроксимации несобственных интегралов на полуоси применены специальные квадратурные формулы, построенные на основе ортогональных многочленов Лаггера. Приведены результаты численных экспериментов, иллюстрирующие сходимость предложенных методов.
565-577
Математическая жизнь
К 80-летию со дня рождения Владислава Сергеевича Медведева
578-582


