Vol 24, No 1 (2022)
- Year: 2022
- Published: 28.12.2025
- Articles: 7
- URL: https://bakhtiniada.ru/2079-6900/issue/view/24373
Full Issue
Mathematics
Uniqueness of the solution of one class of Volterra-Stieltjes linear integral equations of the third kind
Abstract
In this paper, the question of uniqueness of the solution for one class of Volterra-Stieltjes linear integral equations of the third kind is investigated. The notion of derivative with respect to an increasing function was introduced by A. Asanov in 2001 and plays special role in the study. This notion is a generalization of the usual concept of a derivative function and is an inverse operator for one class of the Stieltjes integral. Basing on idea of such derivative, using the method of integral transformations and the method of non-negative quadratic forms, the uniqueness theorems for the solution of the considered class of integral equations are proved. Examples satisfying the conditions of uniqueness theorems are also constructed in the paper. It becomes clear from these examples that it is difficult to study Volterra-Stieltjes linear integral equations of the first and third kind without using the notion of derivative with respect to increasing function.
11-20
Dynamical properties of direct products of discrete dynamical systems
Abstract
A natural way for creating new dynamical systems is to consider direct products of already known systems. The paper studies some dynamical properties of direct products of homeomorphisms and diffeomorphisms. In particular, authors prove that a chain-recurrent set of the direct product of homeomorphisms is a direct product of the chain-recurrent sets. Another result established in the paper is that the direct product of diffeomorphisms holds hyperbolic structure on the direct product of hyperbolic sets. It is known that if a diffeomorphism has a hyperbolic chain-recurrent set, then this mapping is Ω-stable. Therefore, it follows from the results of the paper that the direct product of Ω-stable diffeomorphisms is also Ω-stable. Another question which is raised in the article concerns the existence of an energy function for the direct product of diffeomorphisms which already have such functions (recall that energy function is a smooth Lyapunov function whose set of critical points coincides with the chain-recurrent set of the system). Authors show that in this case the function can be found as a weighted sum of energy functions of initial diffeomorphisms.
21-30
On a topological classification of multidimensional polar flows
Abstract
The work solves the classification problem for structurally stable flows, which goes back to the classical works of Andronov, Pontryagin, Leontovich and Mayer. One of important examples of such flows is so-called Morse-Smale flow, whose non-wandering set consists of a finite number of fixed points and periodic trajectories. To date, there are exhaustive classification results for Morse-Smale flows given on manifolds whose dimension does not exceed three, and a very small number of results for higher dimensions. This is explained by increasing complexity of the topological problems that arise while describing the structure of the partition of a multidimensional phase space into trajectories. In this paper authors investigate the class G(Mⁿ) of Morse-Smale flows on a closed connected orientable manifold Mⁿ whose non-wandering set consists of exactly four points: a source, a sink, and two saddles. For the case when the dimension of the supporting manifold is greater or equal than four, it is additionally assumed that one of the invariant manifolds for each saddle equilibrium state is one-dimensional. For flows from this class, authors describe the topology of the supporting manifold, estimate minimum number of heteroclinic curves, and obtain necessary and sufficient conditions of topological equivalence. Authors also describe an algorithm that constructs standard representative in each class of topological equivalence. One of the surprising results of this paper is that while for n=3 there is a countable set of manifolds that admit flows from class G(M³) there is only one supporting manifold (up to homeomorphism) for dimension n>3
31-39
Topological conjugacy of non-singular flows with two limit cycles on S²×S¹
Abstract
In the paper, non-singular flows with two limit cycles on the manifold S²×S¹ are considered. For such flows, a classification is obtained up to topological conjugacy, and it is shown that they have a functional modulus of stability. Since the functional modulus of stability takes on its own value for each fixed argument, the presence of such modulus implies the presence of an infinite number of numerical moduli of stability. To obtain this result, linearization is carried out in the neighbourhoods of two limit cycles using the construction from the work by M. Irwin. A result is obtained on the presence of a two-dimensional foliation in a neighborhood of the limit cycle; this foliation is invariant up to topological conjugacy. Existence of the functional modulus of stability follows from the presence of such foliations. Namely, when considering the intersection of two foliations and, accordingly, two linearizations acting in the basins of two limit cycles, the desired functional modulus is a map describing the relative position of the foliation layer in the neighborhood of the first limit cycle relative to the layer of the second limit cycle. The results are used from the work by Pochinka O. V. and Shubin D. D. on exactly two classes of topological equivalence of flows in the class under consideration and on description of their differences. The work includes figure which shows 2 classes of topological conjugacy of flows from the classes studied. Also there is a figure which shows the process of gluing R³ into a manifold with a stable limit cycle. Moreover, the construction of a solid torus is shown. The figures show consistent and inconsistent orientation of limit cycles, as well as invariant foliations. Also there is a figure which shows the functional modulus.
40-53
Classification of suspensions over cartesian products of orientation-reversing diffeomorphisms of a circle
Abstract
54-65
On the Movement of Gyrostat under the Action of Potential and Gyroscopic Forces
Abstract
A system of differential equations is considered that describes the motion of a gyrostat under the action of the moment of potential, gyroscopic and circular-gyroscopic forces. The form of the moment of forces is indicated for which the system has the three first integrals of a given form. An analog of V.I. Zubov’s theorem for representing solutions of gyrostat equations by power series is given, and the possibility of using this approach to predict motions is shown. For an analogue of the Lagrange case, integration in quadratures is performed. Analogues of the case of full dynamical symmetry and the Hess case are also indicated. Based on the principle of optimal damping developed by V.I. Zubov, a design of the control moment created by circular-gyroscopic forces is proposed, which ensures that one of the coordinates reaches a constant (albeit unknown in advance) value or the transition of the state vector to the level surface of the particular Hess integral. A numerical example is given, for which a two-parameter family of exact almost periodic solutions, represented by trigonometric functions, is found.
66-75
Endomorphisms and anti-endomorphisms of some finite groupoids
Abstract
In this paper, we study anti-endomorphisms of some finite groupoids. Previously, special groupoids S(k,q) of order k(k+1) with a generating set of k elements were introduced. Previously, the element-by-element description of the monoid of all endomorphisms (in particular, automorphisms) of a given groupoid was studied. It was shown that every finite monoid is isomorphically embeddable in the monoid of all endomorphisms of a suitable groupoid S(k,q). In recent article, we give an element-by-element description for the set of all anti-endomorphisms of the groupoid S(k,q). We establish that, depending on the groupoid S(k,q), the set of all its anti-endomorphisms may be closed or not closed under the composition of mappings. For an element-by-element description of anti-endomorphisms, we study the action of an arbitrary anti-endomorphism on generating elements of a groupoid. With this approach, the anti-endomorphism will fall into one of three classes. Anti-endomorphisms from the two classes obtained will be endomorphisms of given groupoid. The remaining class of anti-endomorphisms, depending on the particular groupoid S(k,q), may either consist or not consist of endomorphisms. In this paper, we study endomorphisms of some finite groupoids G whose order satisfies some inequality. We construct some endomorphisms of such groupoids and show that every finite monoid is isomorphically embedded in the monoid of all endomorphisms of a suitable groupoid G. To prove this result, we essentially use a generalization of Cayley's theorem to the case of monoids (semigroups with identity).
76-95

