Multimodal Stock Price Prediction: A Case Study of the Russian Securities Market
- Authors: Khubiyev K.U.1, Semenov M.E.1
-
Affiliations:
- Sirius University of Science and Technology
- Issue: Vol 16, No 1 (2025)
- Pages: 83-130
- Section: Articles
- URL: https://bakhtiniada.ru/2079-3316/article/view/299220
- DOI: https://doi.org/10.25209/2079-3316-2025-16-1-83-130
- ID: 299220
Cite item
Full Text
Abstract
About the authors
Kasymkhan Usufovich Khubiyev
Sirius University of Science and Technology
Email: kasymkhankhubievnis@gmail.com
Researcher, Center of Social and Economic Forecasting; Master's Student of „Financial Mathematics and Financial Technologies“, Sirius University of Science and Technology, Sirius, Russia. Research interests: artificial intelligence and its application in science, finance, industry, and business
Mikhail Evgenyevich Semenov
Sirius University of Science and Technology
Email: semenov.me@talantiuspeh.ru
PhD in Physics and Mathematics, Scientific Supervisor of the „Financial Mathematics and Financial Technologies“ direction, Sirius University of Science and Technology, Sirius, Russia. Research interests: Information technology, intelligent data processing and analysis technologies.
References
- K. Mishev, A. Gjorgjevikj, I. Vodenska, L. Chitkushev, D. Trajanov. „Evaluation of sentiment analysis in finance: from lexicons to transformers“, IEEE Access, 8 (2020), pp. 131662–131682 DOI https://doi.org/10.1109/ACCESS.2020.3009626.
- T. -T. Ho, Y. Huang. „Stock price movement prediction using sentiment analysis and CandleStick chart representation“, Sensors, 21:23 (2021), 7957, 18 DOI https://doi.org/10.3390/s21237957 pp.
- M. Jaggi, P. Mandal, S. Narang, U. Naseem, M. Khushi. „Text mining of stocktwits data for predicting stock prices“, Applied System Innovation, 4:1 (2021), 13, 22 DOI https://doi.org/10.3390/asi4010013 pp.
- B. Fazlija, P. Harder. „Using financial news sentiment for stock price direction prediction“, Mathematics, 10:13 (2022), 2156, 20 pp.
- Y. Xinli, Ch. Zheng, L. Yuan, D. Shujing, L. Zongyi, L. Yanbin. Temporal data meets LLM — Explainable financial time series forecasting, 2023, 13 pp.
- Zh. Boyu, Y. Hongyang, X. -Y. Liu. Instruct-FinGPT: Financial sentiment analysis by instruction tuning of general-purpose large language models, 2023, 7 pp.
- T. D. Kulikova, E. Y. Kovtun, S. A. Budennyy. „Do we benefit from the categorization of the news flow in the stock price prediction problem?“, Dokl. Math., 108, Suppl. 2 (2023), pp. S503–S510 DOI https://doi.org/10.1134/S1064562423701648.
- Y. Kuratov, M. Arkhipov. Adaptation of deep bidirectional multilingual transformers for Russian language, 2019, 8 pp.
- A. Nikolich, K. Korolev, A. Shelmanov, I. Kiselev. Vikhr: The family of open-source instruction-tuned large language models for Russian, 2024, 8 pp.
- A. Yang, B. Yang, B. Hui, B. Zheng, B. Yu, Ch. Zhou, Ch. Li, Ch. Li, D. Liu, F. Huang, G. Dong, H. Wei, H. Lin, J. Tang, J. Wang, J. Yang, J. Tu, J. Zhang, J. Ma, J. Yang, J. Xu, J. Zhou, J. Bai, J. He, J. Lin, K. Dang, K. Lu, K. Chen, K. Yang, M. Li, M. Xue, N. Ni, P. Zhang, P. Wang, R. Peng, R. Men, R. Gao, R. Lin, Sh. Wang, Sh. Bai, S. Tan, T. Zhu, T. Li, T. Liu, W. Ge, X. Deng, X. Zhou, X. Ren, X. Zhang, X. Wei, X. Ren, X. Liu, Y. Fan, Y. Yao, Y. Zhang, Y. Wan, Y. Chu, Y. Liu, Z. Cui, Zh. Zhang, Zh. Guo, Zh. Fan. Qwen2 Technical Report, 2024, 26 pp.
- K. Khubiev. Russian financial news dataset, Kaggle Platform, 2025 URL https://www.kaggle.com/datasets/kkhubiev/russian-financial-news doi: 10.34740/kaggle/dsv/10614647.
Supplementary files
