Symptoms extraction and automatic diagnosis prediction from medical clinical records
- Авторлар: Serdyuk Y.P.1
-
Мекемелер:
- Ailamazyan Program Systems Institute of RAS
- Шығарылым: Том 15, № 4 (2024)
- Беттер: 153-181
- Бөлім: Articles
- URL: https://bakhtiniada.ru/2079-3316/article/view/299216
- DOI: https://doi.org/10.25209/2079-3316-2024-15-4-153-181
- ID: 299216
Дәйексөз келтіру
Толық мәтін
Аннотация
Авторлар туралы
Yuri Serdyuk
Ailamazyan Program Systems Institute of RAS
Email: Yuri@serdyuk.botik.ru
Әдебиет тізімі
- Романов Н. А., Сачек М. М.. «Системы поддержки принятия клинических решений: современное состояние и проблемы», Вопросы организации и информатизациии здравоохранения, 2018, №3, с. 18–25.
- Osheroff J. A.. Improving medication use and outcomes with clinical decision support: a step-by-step guide, HIMSS Publishing, 2009, ISBN 9780980069730, 300 pp.
- Yalunin A., Nestrov A., Umerenkov D.. RuBioRoBERTa: a pre-trained biomedical language model for Russian language biomedical text mining, 2022, 5 pp.
- Blinov P., Avetisian M., Kokh V., Umerenkov D., Tuzhilin A.. “Predicting clinical diagnosis from patients electronic health records usin BERT-based neural networks”, Artificial Intelligence in Medicine: 18th Int. Conf. on Art. Intel. In Medicine, AIME 2020 (Minneapolis, MN, USA, August 25-28, 2020), Lecture Notes in Computer Science, vol. 12299, Springer, Cham, 2020, ISBN 978-3-030-59136-6, pp. 111–121.
- Garg R. K., Urs V. L., Agarwal A. A., Chaudhary S. K., Paliwal V., Kar S. K.. “Exploring the role ChatGPT in patient care (diagnosis and treatment) and medical research: a systematic review”, Health Promotion Perspectives, 13:3 (2023), pp. 183–191.
- Steinkamp J. M., Bala W., Sharma A., Kantrowitz J. J.. “Task definition, annotated dataset, and supervised natural language processing models for symptom extraction from unstructured clinical notes”, Journal of Biomedical Informatics, 102 (2020), 103354, 9 pp.
- Гаврилов Д. В., Кирилкина А. В., Серова Л. М.. «Алгоритм формирования подозрения на новую коронавирусную инфекцию на основе анализа симптомов для использования в системах поддержки принятия врачебных решений», Врач и информационные технологии, 2020, №4, с. 51–58.
- Umerenkov D., Zubkova G., Nesterov A.. Deciphering diagnosis: how large language models explanations influence clinical decision making, 2023, 11 pp.
- Tutubalina E., Alimova I., Miftahutdinov Z., Sakhovskiy A., Malykh V., Nikolenko S.. “The Russian Drug Reaction Corpus and neural models for drug reactions and effectiveness detection in user reviews”, Bioinformatics, 37:2 (2021), pp. 243–249.
- Barile J., Margolis A., Cason G., Kim R., Kalash S., Tchaconas A., Milanaik R.. “Diagnostic accuracy of a large language model in pediatric case studies”, JAMA Pediatrics, 178:3 (2024), pp. 313–315.
- Сердюк Ю. П., Власова Н. А., Момот С. Р.. «Система извлечения упоминаний симптомов из текстов на естественном языке с помощью нейронных сетей», Программные системы: теория и приложения, 14:1(56) (2023), с. 95–123.
- Shang Yu-M., Huang H., Mao X. L.. “OneRel: Joint entity and relation extraction with one module in one step”, The Thirty-Sixth AAAI Conference on Artificial Intelligence (AAAI-22) (February 22–March 1, 2022, online), Curran Associates, Inc., 2022, ISBN 9781713855743, pp. 11285–11293.
- Joshi M., Chen D., Liu Y., Weld D. S., Zettlemoyer L., Levy O.. “SpanBERT: improving pre-training by representing and predicting spans”, Transactions of the Association for Computational Linguistics, 8 (2020), pp. 64–77.
- Lybarger K., Ostendorf M., Thompson M., Yetisgen M.. “Extracting COVID-19 diagnoses and symptoms from clinical text: A new annotated corpus and neural event extraction framework”, Journal of Biomedical Informatics, 117 (2021), 103761, 13 pp.
- Thirunavukarasu A. J., Ting D. S. J., Elangovan K., Gutierrez L., Tan T. F., Ting D. S. W.. “Large language models in medicine”, Nat. Med, 29:8 (2023), pp. 1930–1940.
- Shah N. H., Entwistle D., Pfeffer M. A.. “Creation and adoption of large language models in medicine”, JAMA, 330:9 (2023), pp. 866–869.
- Singhal K., Azizi S., Tu T., Mahdavi S. S., Wei J., Chung H. W., Scales N., Tanwani A., Cole-Lewis H., Pfohl S., Payne P., Seneviratne M., Gamble P., Kelly Ch., Babiker A., Schärli N., Chowdhery A., Mansfield Ph., Demner-Fushman D., Agüera y Arcas B., Webster D., Corrado G. S., Matias Y., Chou K., Gottweis J., Tomasev N., Liu Y., Rajkomar A., Barral J., Semturs Ch., Karthikesalingam A., Natarajan V.. “Large language models encode clinical knowledge”, Nature, 620:7972 (2023), pp. 172–180.
- Young C. C., Enichen E., Rivera Ch., Auger C. A., Grant N., Rao A., Succi M. D.. “Diagnostic accuracy of a custom large language model on rare pediatric disease case reports”, American Journal of Medical Genetics, Part A, 2024, e63878.
- Kanjee Z., Crowe B., Rodman A.. “Accuracy of generative artificial intelligence model in a complex diagnostic challenge”, JAMA, 330:1 (2023), pp. 78–80.
- Gargari G. K., Fatehi F., Mohammadi I., Firouzabadi S. R., Shafiee A., Habibi Gh.. “Diagnostic accuracy of large language models in psychiatry”, Asian Journal of Psychiatry, 100 (2024), 104168.
- Nielsen M.. Neural networks and deep learning, 2016, free online book URL neuralnetworksanddeeplearning.com.
Қосымша файлдар
