Building robust malware detection through conditional Generative Adversarial Network-based data augmentation
- Authors: Baghirov E.1
-
Affiliations:
- Institute of Information Technology
- Issue: Vol 15, No 4 (2024)
- Pages: 97-110
- Section: Articles
- URL: https://bakhtiniada.ru/2079-3316/article/view/299214
- DOI: https://doi.org/10.25209/2079-3316-2024-15-4-97-110
- ID: 299214
Cite item
Full Text
Abstract
About the authors
Elshan Baghirov
Institute of Information Technology
Email: elsenbagirov1995@gmail.com
Elshan Baghirov is a PhD candidate at the Institute of Information Technology, Baku, Azerbaijan. His research focuses on machine learning, and cybersecurity, with a particular emphasis on malware detection. He is also a data scientist at Kapital Bank OJSC, where he applies advanced analytics and predictive modeling to real-world business problems. His scientific interests include artificial intelligence, deep learning, and cybersecurity.
References
- D. O. Won, Y. N. Jang, S. W. Lee. “PlausMal-GAN: Plausible malware training based on generative adversarial networks for analogous zero-day malware detection”, IEEE Transactions on Emerging Topics in Computing, 11:1 (2023), pp. 82–94.
- E. Baghirov. “A comprehensive investigation into robust malware detection with explainable AI”, Cyber Security and Applications, 3 (December 2025), 100072.
- E. Baghirov. “Techniques of malware detection: Research review”, 2021 IEEE 15th International Conference on Application of Information and Communication Technologies, AICT 2021 (13–15 October 2021, Baku, Azerbaijan), IEEE, 2021, ISBN 978-1-6654-3641-0/21, pp. 1–6.
- S. Jang, S. Li, Y. Sung. “Generative adversarial network for global image-based local image to improve malware classification using convolutional neural network”, Applied Sciences, 10:21 (2020), 7585, 14 pp.
- C. Reilly, S. O Shaughnessy, C. Thorpe. “Robustness of image-based malware classification models trained with generative adversarial networks”, EICC'23: Proceedings of the 2023 European Interdisciplinary Cybersecurity Conference (14–15 June 2023, Stavanger, Norway), ACM, New York, 2023, ISBN 978-1-4503-9829-9, pp. 92–99.
- H. Nguyen, F. Di Troia, G. Ishigaki, M. Stamp. “Generative adversarial networks and image-based malware classification”, Journal of Computer Virology and Hacking Techniques, 19 (2023), pp. 579–595.
- S. Li, Z. Tang, H. Li, J. Zhang, H. Wang, J. Wang. “GMADV: An android malware variant generation and classification adversarial training framework”, Journal of Information Security and Applications, 84 (August 2024), 103800.
- I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, Y. Bengio. “Generative adversarial nets”, Advances in Neural Information Processing Systems 27, NIPS 2014 (8–13 December 2014, Montreal, Canada), 2014, ISBN 9781510800410, 9 pp.
- R. Yuwana, F. Fauziah, A. Heryana, D. Krisnandi, R. S. Kusumo, H. F. Pardede. “Data augmentation using adversarial networks for tea diseases detection”, Jurnal Elektronika dan Telekomunikasi, 20:1 (2020), pp. 29–35.
- M. Mirza, S. Osindero. Conditional generative adversarial nets, 2014, 7 pp.
- M. Iwayama, S. Wu, C. Liu, R. Yoshida. “Functional output regression for machine learning in materials science”, Journal of chemical information and modeling, 62:20 (2022), pp. 4837–4851.
- S. Mahdavifar, A. F. A. Kadir, R. Fatemi, D. Alhadidi, A. A. Ghorbani. “Dynamic android malware category classification using semi-supervised deep learning”, 2020 IEEE Intl Conf on Dependable, Autonomic and Secure Computing, Intl Conf on Pervasive Intelligence and Computing, Intl Conf on Cloud and Big Data Computing, Intl Conf on Cyber Science and Technology Congress, DASC/PiCom/CBDCom/CyberSciTech (17–22 August 2020, Calgary, AB, Canada), 2020, ISBN 978-1-7281-6609-4, pp. 515–522.
- S. Mahdavifar, D. Alhadidi, A. A. Ghorbani. “Effective and efficient hybrid android malware classification using pseudo-label stacked auto-encoder”, Journal of Network and Systems Management, 30 (2022), 22, 34 pp.
Supplementary files
