Recovering text sequences using deep learning models
- Авторлар: Vinokurov I.V.1
-
Мекемелер:
- Financial University under the Government of the Russian Federation
- Шығарылым: Том 15, № 3 (2024)
- Беттер: 75-110
- Бөлім: Articles
- URL: https://bakhtiniada.ru/2079-3316/article/view/299207
- DOI: https://doi.org/10.25209/2079-3316-2024-15-3-75-110
- ID: 299207
Дәйексөз келтіру
Толық мәтін
Аннотация
Негізгі сөздер
Авторлар туралы
Igor Vinokurov
Financial University under the Government of the Russian Federation
Email: igvvinokurov@fa.ru
Candidate of Technical Sciences (PhD), Associate Professor at the Financial University under the Government of the Russian Federation. Research interests: information systems, information technologies, data processing technologies
Әдебиет тізімі
- N. C. Sabharwal, A. Agrawal. Hands-on Question Answering Systems with BERT: Applications in Neural Networks and Natural Language Processing, Apress, Berkeley, CA, 2021, ISBN 978-1-4842-6664-9, xv+184 pp.
- K. Aitken, V V. Ramasesh, Y. Cao, N. Maheswaranathan. Understanding how encoder-decoder architectures attend, 2021, 24 pp.
- A. Rahali, M. A. Akhloufi. “End-to-end transformer-based models in textual-based NLP”, Artificial Intelligence, 4:1 (2023), pp. 54–110.
- A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, I. Polosukhin. Attention is all you need, 2017, 15 pp.
- K. Papineni, S. Roukos, T. Ward, W.-J. Zhu. “BLEU: a method for automatic evaluation of machine translation”, ACL'02 Proceedings of the 40th Annual Meeting of the Association for Computational Linguistics (July 7–12, 2002, Philadelphia, Pennsylvania, USA), ACL, Stroudsburg, 2002, pp. 311–318.
- Ch.-Y. Lin. “ROUGE: a package for automatic evaluation of summaries”, Proceedings of the Workshop on Text Summarization Branches Out, WAS 2004 (July, 2004, Barcelona, Spain), ACL, 2004, 74–81 pp.
- Vinokurov I. V.. “Using a convolutional neural network to recognize text elements in poor quality scanned images”, Program Systems: Theory and Applications, 13:3(54) (2022), pp. 45–59.
- Vinokurov I. V.. “Recognition of digital sequences using convolutional neural networks”, Program Systems: Theory and Applications, 14:3 (2023), pp. 3–36 (in Russian, in English).
- Th. Luong, H. Pham, Ch. D. Manning. “Effective approaches to attention-based neural machine translation”, Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing (17–21 September, 2015, Lisbon, Portugal), ACL, 2015, ISBN 978-1-941643-32-7, pp. 1412–1421.
- A. M. Dai, Q. V. Le. Semi-supervised Sequence Learning, NIPS 2015 (December 7–12, 2015, Montreal, Quebec, Canada), Advances in Neural Information Processing Systems, vol. 28, Curran Associates, Inc., 2015, ISBN 9781510825024, 9 pp.
- J. Gehring, M. Auli, D. Grangier, D. Yarats, Y. N. Dauphin. “Convolutional sequence to sequence learning”, Proceedings of the 34th International Conference on Machine Learning (6–11 August 2017, International Convention Centre, Sydney, Australia), PMLR, vol. 70, 2017, pp. 1243–1252.
- D. Ulyanov, A. Vedaldi, V. Lempitsky. “Deep image prior”, International Journal of Computer Vision, 128:7 (2020), pp. 1867–1888.
- K. Hakala, A. Vesanto, N. Miekka, T. Salakoski, F. Ginter. Leveraging text repetitions and denoising autoencoders in OCR post-correction, 2019, 5 pp.
- G. Huang, J. Wang, H. Tang, X. Ye. “BERT-based contextual semantic analysis for English preposition error correction”, Journal of Physics: Conference Series, 1693:1 (2020), 012115, 5 pp.
- K. Song, X. Tan, T. Qin, J. Lu, T.-Y. Liu. “MASS: masked sequence to sequence pre-training for language generation”, International Conference on Machine Learning (9–15 June 2019, Long Beach, California, USA), PMLR, vol. 97, 2019, pp. 5926–5936.
- Sh. Chollampatt, D, T. Hoang, H. T. Ng. “Adapting grammatical error correction based on the native language of writers with neural network joint models”, Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, EMNLP 2016 (1–4 November, 2016, Austin, Texas, USA), ACL, 2016, ISBN 978-1-945626-25-8, pp. 1901–1911.
- A. Graves. Supervised Sequence Labelling with Recurrent Neural Networks, Studies in Computational Intelligence, vol. 385, Springer, Berlin–Heidelberg, 2012, ISBN 978-3-642-24797-2 vadjust{, 146 pp.
- T. Ge, X. Zhang, F. Wei, M. Zhou. “Automatic grammatical error correction for sequence-to-sequence text generation: an empirical study”, Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics (July 28–August 2, 2019, Florence, Italy), ACL, 2019, ISBN 978-1-950737-48-2, pp. 6059–6064.
- X. Zhang, J. Zhao, Y. LeCun. “Character-level convolutional networks for text classification”, 2016, 9 pp.
- Z. Xie, A. Avati, N. Arivazhagan, D. Jurafsky, A. Ng. Neural language correction with character-based attention, 2016, 10 pp.
- J. Ramirez-Orta, E. Xamena, A. Maguitman, E. Milios, A. Soto. “Post-OCR document correction with large ensembles of character sequence-to-sequence models”, Proceedings of the AAAI Conference on Artificial Intelligence, 36 (2022), pp. 11192–11199.
- A. A. Alkhazraji, K. Baheeja, A. M. N. Alzubaidi. “Ancient textual restoration using deep neural networks: a literature review”, 2023 Al-Sadiq International Conference on Communication and Information Technology, AICCIT 2023 (04–06 July 2023, Al-Muthana, Iraq), 2023, ISBN 9798350341898, pp. 64–69.
- F. Chollet. Deep Learning with Python, 2nd ed., Manning, 2021, ISBN 9781617296864, 504 pp.
- A. Géron. Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow, 2nd ed., O'Reilly Media, Sebastopol, 2019, ISBN 978-1-492-03264-9, 848 pp.
- A. Kapoor, A. Gulli, S. Pal. Deep Learning with TensorFlow and Keras: Build and deploy supervised, unsupervised, deep, and reinforcement learning models, 3rd ed., Packt Publishing, 2022, ISBN 978-1803232911, 698 pp.
Қосымша файлдар
