Application of Siamese neural networks to classify plant biomass by visual state
- Authors: Smirnov A.V.1, Tishchenko I.P.1
-
Affiliations:
- Ailamazyan Program Systems Institute of RAS
- Issue: Vol 15, No 3 (2024)
- Pages: 53-74
- Section: Articles
- URL: https://bakhtiniada.ru/2079-3316/article/view/299206
- DOI: https://doi.org/10.25209/2079-3316-2024-15-3-53-74
- ID: 299206
Cite item
Full Text
Abstract
Keywords
About the authors
Alexander Vladimirovich Smirnov
Ailamazyan Program Systems Institute of RAS
Email: asmirnov_1991@mail.ru
Junior researcher, Laboratory of Image Processing and Analysis Methods, A.K. Ailamazyan Program Systems Institute of RAS. Research interests: computer vision; neural networks; robotics; automation and control
Igor Petrovich Tishchenko
Ailamazyan Program Systems Institute of RAS
Email: igor.p.tishchenko@gmail.com
Candidate of Technical Sciences, Head of the Laboratory of Image Processing and Analysis Methods, A.K. Ailamazyan Institute of Software Systems of the Russian Academy of Sciences. Research interests: computer vision; neural networks; robotics; automation and control
References
- Gall G. E. C., Pereira T. D., Jordan A., Meroz Y.. “Fast estimation of plant growth dynamics using deep neural networks”, Plant Methods, 2022, no.1.
- Taewon M., Woo-Joo C., Se-Hun J., Da-Seul C., Myung-Min O.. “Growth Analysis of Plant Factory-Grown Lettuce by Deep Neural Networks Based on Automated Feature Extraction”, Horticulturae, 2022, no.12.
- Savitha P., Mungamuri S.. “Accurate plant species analysis for plant classification using convolutional neural network architecture”, International Journal of Reconfigurable and Embedded Systems (IJRES), 2024, no.1, pp. 160–170.
- Quoc T. N., Hoang V. T.. “VNPlant-200 – A Public and Large-Scale of Vietnamese Medicinal Plant Images Dataset”, Integrated Science in Digital Age 2020, 2020, pp. 406–411.
- Joseph D. S., Pawar P. M., Pramanik R.. “Intelligent plant disease diagnosis using convolutional neural network: a review”, Multimedia Tools and Applications, 2023, no.14.
- Khanna M., Singh L. K., Thawkar S., Goyal M.. “PlaNet: a robust deep convolutional neural network model for plant leaves disease recognition”, Multimedia Tools and Applications, 2024, no.2.
- Faisal M., Leu J. S., Avian C., Prakosa S. W., Köppen M.. “DFNet: Dense fusion convolution neural network for plant leaf disease classification”, Agronomy Journal, 2024, no.3, pp. 826–838.
- Åström O., Hedlund H., Sopasakis A.. “Machine-Learning Approach to Non-Destructive Biomass and Relative Growth Rate Estimation in Aeroponic Cultivation”, Agriculture, 2023, no.13.
- Wang B., Wang D.. “Plant Leaves Classification: A Few-Shot Learning Method Based on Siamese Network”, IEEE Access, 2019, no.7, pp. 151754–151763.
- Figueroa-Mata G., Mata-Montero E.. “Using a Convolutional Siamese Network for Image-Based Plant Species Identification with Small Datasets”, Biomimetics, 2020, no.5.
- Goncharov P., Uzhinskiy A., Ososkov G., Nechaevskiy A., Zudikhina J.. “Deep Siamese Networks for Plant Disease Detection”, Mathematical Modeling and Computational Physics 2019 (MMCP 2019), 2020, no.226.
- Sherly K. K., Sonia A.. “Hybrid CNN Models for Plant Species Recognition and Disease Detection”, Intelligent Computing, 2024, pp. 35–50.
- Du J., Fu W., Zhang Y., Wang Z.. “Advancements in Image Recognition: A Siamese Network Approach”, Information Dynamics and Applications, 2024, no.2, pp. 89–103.
- Bromley J., Guyon I., LeCun Y., Säckinger E., Shah R.. “Signature verification using a ‘Siamese’ time delay neural network”, In Proceedings of the 6th International Conference on Neural Information Processing Systems (NIPS'93), 1993, pp. 737–744.
- Смирнов А. В., Иванов Е. С.. «Анализ изображений растения, полученных с камеры системы автоматизированного ухода, для визуальной оценки изменения его состояния с течением времени», Программные системы: теория и приложения, 2023, №3, с. 37–58.
Supplementary files
