Recognition of digital sequences using convolutional neural networks
- Authors: Vinokurov I.V.1
-
Affiliations:
- Financial University under the Government of the Russian Federation
- Issue: Vol 14, No 3 (2023)
- Pages: 3-36
- Section: Articles
- URL: https://bakhtiniada.ru/2079-3316/article/view/259981
- DOI: https://doi.org/10.25209/2079-3316-2023-14-3-3-36
- ID: 259981
Cite item
Full Text
Abstract
Keywords
About the authors
Igor Victorovich Vinokurov
Financial University under the Government of the Russian Federation
Author for correspondence.
Email: igvvinokurov@fa.ru
ORCID iD: 0000-0001-8697-1032
Candidate of Technical Sciences (PhD), Associate Professor at the Financial University under the Government of the Russian Federation. Research interests: information systems, information technologies, data processing technologies.
References
- Винокуров И. В.. «Распознавание табличной информации с использованием свёрточных нейронных сетей», Программные системы: теория и приложения, 14:1(56) (2023), с. 3–30.
- Винокуров И. В.. «Использование свёрточной нейронной сети для распознавания элементов текста на отсканированных изображениях плохого качества», Программные системы: теория и приложения, 13:3(54) (2022), с. 29–43.
- Мюллер А., Гвидо С.. Введение в машинное обучение с помощью Python. Руководство для специалистов по обработке данных, Изд-во «ООО Альфа-книга», СПб., 2017, ISBN 978-5-907515-03-1, 480 с.
- M. Diem, S. Fiel, F. Kleber, R. Sablatnig, J. M. Saavedra, D. Contreras, J. M. Barrios, L. S. Oliveira. “ICFHR 2014 competition on handwritten digit string recognition in challenging datasets (HDSRC 2014)”, 2014 14th International Conference on Frontiers in Handwriting Recognition (Hersonissos, Greece, 01–04 September 2014), pp. 779–784.
- N. Otsu. “A threshold selection method from gray-level histograms”, IEEE Trans. Syst. Man Cybern., 9:1 (1979), pp. 62–66.
- J. C. B. Rabelo, C. Zanchettin, C. A. B. Mello and B. L. D. Bezerra. “A multi-layer perceptron approach to threshold documents with complex background”, 2011 IEEE International Conference on Systems, Man, and Cybernetics (Anchorage, AK, USA, 09–12 October 2011), pp. 2523–2530.
- J. Sauvola, M. Pietik.ainen. “Adaptive document image binarization”, Pattern Recognition, 33:2 (2000), pp. 225–236.
- C. Cortes, V. Vapnik. “Support-vector networks”, Mach. Learn., 20:3 (1995), pp. 273–297.
- T. Kohonen. “Self-organized formation of topologically correct feature maps”, Biol. Cybern., 43:1 (1982), pp. 59–69.
- N. Dalal, B. Triggs. “Histograms of oriented gradients for human detection”, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR'05 (San Diego, CA, USA, 20–25 June 2005), pp. 886–893.
- J. J. Hopfield. “Neural networks and physical systems with emergent collective computational abilities”, Proc. Nat. Acad. Sci. USA, 79:8 (1982), pp. 2554–2558.
- A. Graves, J. Schmidhuber. “Offline handwriting recognition with multidimensional recurrent neural networks”, Guide to OCR for Arabic Scripts, Advances in Neural Information Processing Systems 21 (NIPS 2008), eds. M.argner V., El Abed H., Springer, London, 2008, ISBN 978-1-4471-4072-6, pp. 297–313.
- B. L. D. Bezerra, C. Zanchettin, V. B. de Andrade. “A MDRNN-SVM hybrid model for cursive offline handwriting recognition”, Artificial Neural Networks and Machine Learning — ICANN 2012, Lecture Notes in Computer Science, vol. 7553, Springer, Berlin, 2012, ISBN 978-3-642-33265-4, pp. 246–254.
- A. Gattal, Y. Chibani. “Segmentation strategy of handwritten connected digits (SSHCD)”, Image Analysis and Processing (ICIAP), 2011, pp. 248–254.
- M. Hejazi, G. Shevlyakov and Y.-S. Ho. “Modified discrete radon transforms and their application to rotation-invariant image analysis”, 2006 IEEE Workshop on Multimedia Signal Processing, Lecture Notes in Computer Science, vol. 6979, Springer, Berlin–Heidelberg, 2006, ISBN 978-3-642-24088-1, pp. 429–434.
- R. Saabni. “Recognizing handwritten single digits and digit strings using deep architecture of neural networks”, 2016 Third International Conference on Artificial Intelligence and Pattern Recognition, AIPR (Lodz, Poland, 19–21 September 2016), 2016, pp. 1–6.
- K. He, X. Zhang, S. Ren, J. Sun. “Deep residual learning for image recognition”, 2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR (Las Vegas, NV, USA, 27–30 June 2016), pp. 770–778.
- H. Zhan, Q. Wang, Y. Lu. “Handwritten digit string recognition by combination of residual network and RNN-CTC”, ICONIP 2017: Neural Information Processing, Lecture Notes in Computer Science, vol. 10639, Springer, Cham, 2017, ISBN 978-3-319-70136-3, pp. 583–591.
- Q. Wang, Y. Lu. “A sequence labeling convolutional network and its application to handwritten string recognition”, Twenty-Sixth International Joint Conference on Artificial Intelligence (Melbourne, Australia, 19–25 August 2017), 2017, pp. 2950–2956.
- H. Zhan, S. Lyu, X. Tu, Y. Lu. “Residual CRNN and its application to handwritten digit string recognition”, ICONIP 2019: Neural Information Processing, Communications in Computer and Information Science, vol. 1143, Springer, Cham, 2019, ISBN 978-3-030-36802-9, pp. 49–56.
- Y. Ma, J. Guo, W. Wei. “An exceedingly fast model for low resolution handwritten digit string recognition”, 2019 IEEE 7th International Conference on Computer Science and Network Technology, ICCSNT (Dalian, China, 9–20 October 2019), pp. 282–288.
- A. G. Hochuli, A. S. Britto, J. P. Barddal, R. Sabourin, L. E. S. Oliveira. “An End-to-End approach for recognition of modern and historical handwritten numeral strings”, 2020 International Joint Conference on Neural Networks, IJCNN (Glasgow, UK, 19–24 July 2020), 2020, pp. 1–8.
- J. Redmon, S. Divvala, R. Girshick, A. Farhadi. “You only look once: Unified real-time object detection”, 2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR (Las Vegas, NV, USA, 27–30 June 2016), pp. 779–788.
- A. G. Hochuli, L. S. Oliveira, A. S. Britto, R. Sabourin. “Handwritten digit segmentation: Is it still necessary?” Pattern Recognition, 78 (2018), pp. 1–11.
- J. Guo, Y. Xu. “Low Resolution Handwritten Digit String Recognition based on Object Detection Network”, 2020 International Joint Conference on Neural Networks, IJCNN (Glasgow, UK, 19–24 July 2020), pp. 1–7.
- J. Moolayil. Learn Keras for Deep Neural Networks. A Fast-Track Approach to Modern Deep Learning with Python, Apress, Berkeley, 2019, ISBN 978-1-4842-4240-7, xv+182 pp.
- S. Datta. Learning OpenCV 3 Application Development, Packt Publiching, 2016, ISBN 9781784391454, 294 pp.
Supplementary files
