Simulation of two-phase flow in porous media using an inhomogeneous network model

Cover Page

Cite item

Full Text

Abstract

We present an inhomogeneous two-dimensional network model of two-phase flow in porous media. The edges of the network are assumed to be capillary tubes of different radii. We propose a new algorithm for handling phase fluxes at the nodes of this network model. We perform two test problems and show that the two-phase flow in this inhomogeneous network model demonstrates properties that are analogous to those of real porous media: capillary imbibition, dependence of capillary pressure on saturation and effect of capillary forces in two-phase displacement. The two test problems are: the counter-current imbibition and the twophase displacement in a periodically inhomogeneous porous medium. In the former problem, we implement a network consisting of two regions: a region of low-permeability with thin capillaries surrounded by a region of high-permeability with thick capillaries, initially saturated with wetting and nonwetting incompressible fluids, respectively. Capillary equilibrium is established due to counter-current imbibition by a region. We examine the dependence: of saturation of the wetting fluid with respect to time in the regions, and of capillary pressure on the current saturation. We have obtained a qualitative agreement with the known experimental and theoretical results, which will further allow us to use this network model to verify homogenized models of capillary nonequilibrium. In the latter problem, we consider the two-phase displacement, where the network is initially saturated with nonwetting fluid. Then wetting fluid is injected through a boundary at a constant rate. We analyze the saturation with respect to the axis which is along the applied pressure gradient for various moments in time with various values of coefficients of surface tension. The results show that for lower values of coefficient of surface tension, the wetting fluid prefers to invade through the thicker tubes, and in the case of higher values, through thinner tubes.

About the authors

Kafi Ul. Shabbir

Moscow Institute of Physics and Technology (National Research University)

Author for correspondence.
Email: kafiulshabbir@phystech.edu

O. Ya. Izvekov

Moscow Institute of Physics and Technology (National Research University)

Email: izvekov_o@inbox.ru

Andrey Victorovich Konyukhov

Moscow Institute of Physics and Technology (National Research University); Joint Institute for High Temperatures, Russian Academy of Sciences

Email: konyukhov_av@mail.ru
Candidate of physico-mathematical sciences

References

  1. E. Aker, et al., “A two-dimensional network simulator for two-phase flow in porous media”, Transport in Porous Media, 32 (1998), 163–186.
  2. G. Barenblatt, T. Patzek, D. Silin, “The mathematical model of nonequilibrium effects in water–oil displacement”, SPE Journal, 8:4 (2003), 409–416.
  3. G. Barenblatt, I. Zheltov, I. Kochina, “Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks”, Journal of Applied Mathematics and Mechanics, Pergamon, 24:5 (1960), 1286–1303.
  4. M. Blunt, et al., “Pore-scale imaging and modelling”, Advances in Water Resources, 51 (2013), 197–216.
  5. S. Chen, G. Doolen, “Lattice Boltzmann method for fluid flows”, Annual Review of Fluid Mechanics, 30:1 (1998), 329–364.
  6. O. Coussy, Poromechanics, John Wiley & Sons, 2004, 315 pp.
  7. I. Fatt, “The network model of porous media. 3. Dynamic properties of networks with tube radius distribution”, Transactions of the American Institute of Mining and Metallurgical Engineers, 207:7 (1956), 164–181.
  8. S. Hassanizadeh, “Continuum description of thermodynamic processes in porous media: Fundamentals and applications”, in Modeling Coupled Phenomena in Saturated Porous Materials, 2004, 179–223.
  9. S. Hassanizadeh, W. Gray, “High velocity flow in porous media”, Transport in Porous Media, 2 (1987), 521–531.
  10. V. I. Kondaurov, “A non-equilibrium model of a porous medium saturated with immiscible fluids”, Journal of Applied Mathematics and Mechanics, 73:1 (2009), 88–102.
  11. V. I. Kondaurov, “The thermodynamically consistent equations of a thermoelastic saturated porous medium”, Journal of Applied Mathematics and Mechanics, 71:4 (2007), 562–579.
  12. A. Konyukhov, L. Pankratov, A. Voloshin, Homogenized Non-equilibrium Models of Two-phase Flow in Fractured Porous Media, Fizmatkniga, Moscow, 2017, 187 pp.
  13. A. Konyukhov, L. Pankratov, A. Voloshin, “The homogenized Kondaurov type non-equilibrium model of two-phase flow in multiscale non-homogeneous media”, Physica Scripta, 94:4 (2019).
  14. N. Labed, L. Bennamoun, J. Fohr, “Experimental study of two-phase flow in porous media with measurement of relative permeability”, Fluid Dynamics & Materials Processing, 8:4 (2012), 423–436.
  15. J. Liu, L. Lin, R. Song, J. Zhao, “A pore scale modeling of fluid flow in porous medium based on Navier–Stokes equation”, Disaster Advances, 6 (2013), 5–11.
  16. P. Meakin, A. Tartakovsky, “Modeling and simulation of pore-scale multiphase fluid flow and reactive transport in fractured and porous media”, Reviews of Geophysics, 47:3 (2009).
  17. T. Ramstad, C. Berg, K. Thompson, “Pore-scale simulations of single- and two-phase flow in porous media: approaches and applications”, Transport in Porous Media, 130 (2019), 77–104.
  18. K. Shabbir, “Simulation of two-phase flow in porous media using a two-dimensional network model”, Proceedings of the 65th All-Russia Scientific Conference MIPT, v. 78, Fizmatkniga, Moscow, 2023, 205–206.
  19. B. Su, C. Sanchez, X. Yang, “Insights into hierarchically structured porous materials: from nanoscience to catalysis, separation, optics, energy, and life science”, in Hierarchically Structured Porous Materials, Wiley Online Library, 2012, 1–27.
  20. S. Whitaker, “Flow in porous media. I: A theoretical derivation of Darcy’s law”, Transport in Porous Media, 1 (1986), 3–25.

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».