Альбедо снежного покрова и его параметризация для целей моделирования природных систем и климата
- Авторы: Турков Д.В.1, Дроздов Е.Д.1,2, Ломакин А.А.3,4
-
Учреждения:
- Институт географии РАН
- Московский государственный университет имени М.В. Ломоносова
- Национальный исследовательский университет «Высшая школа экономики»
- Институт космических исследований РАН
- Выпуск: Том 64, № 3 (2024)
- Страницы: 403-419
- Раздел: Снежный покров и снежные лавины
- URL: https://bakhtiniada.ru/2076-6734/article/view/275911
- DOI: https://doi.org/10.31857/S2076673424030079
- EDN: https://elibrary.ru/INVIGY
- ID: 275911
Цитировать
Аннотация
Предложена новая схема параметризации альбедо снежного покрова, учитывающая большинство факторов, важных для метаморфизма снега. Проведено тестирование новой схемы параметризации альбедо снега в составе модели LSM SPONSOR по данным многолетних наблюдений. Показано, что новая схема позволяет получать несмещённые оценки альбедо со статистическими характеристиками, близкими к тем, что получены для данных наблюдений.
Ключевые слова
Полный текст

Об авторах
Д. В. Турков
Институт географии РАН
Email: drozdov.jeka@yandex.ru
Россия, Москва
Е. Д. Дроздов
Институт географии РАН; Московский государственный университет имени М.В. Ломоносова
Автор, ответственный за переписку.
Email: drozdov.jeka@yandex.ru
Россия, Москва; Москва
А. А. Ломакин
Национальный исследовательский университет «Высшая школа экономики»; Институт космических исследований РАН
Email: drozdov.jeka@yandex.ru
Россия, Москва; Москва
Список литературы
- Дроздов Е.Д., Турков Д.В., Торопов П.А., Артамонов А.Ю. Термический режим снежного покрова зимой в высокогорной части Эльбруса по натурным данным и результатам моделирования // Лёд и Снег. 2023. Т. 63. № 2. С. 225–242. https://doi.org/10.31857/S2076673423020059
- Кондратьев К.Я. Актинометрия. Л.: Гидрометеоиздат, 1965. 691 с.
- Котляков В.М. Криосфера и климат // Экология и жизнь. 2010. № 11. С. 51–59.
- Красс М.С., Мерзликин В.Г. Радиационная физика снега и льда. Л.: Гидрометеоиздат, 1990. 264 с.
- Кузьмин П.П. Физические свойства снежного покрова. Л.: Гидрометеоиздат, 1957. 179 с.
- Кузьмин П.П. Процесс таяния снежного покрова. Л.: Гидрометеоиздат, 1961. 344 с.
- Матвеев Л.Т. Курс общей метеорологии. Физика атмосферы. Л.: Гидрометеоиздат, 1984. 752 с.
- Снег: Справочник / Под ред. Д.М. Грея, Д.Х. Мэйла. Пер. с англ. под ред. В.М. Котлякова. Л.: Гидрометеоиздат, 1986. 751 с.
- Турков Д.В., Сократов В.С. Расчёт характеристик снежного покрова равнинных территорий с использованием модели локального тепловлагообмена SPONSOR и данных реанализа на примере Московской области // Лёд и Снег. 2016. Т. 56. № 3. С. 369–380. https://doi.org/10.15356/2076-6734-2016-3-369-380
- Шмакин А.Б., Турков Д.В., Михайлов А.Ю. Модель снежного покрова с учётом слоистой структуры и её сезонной эволюции // Криосфера Земли. 2009. Т. XIII (4). С. 69–79.
- Barlett P.A., MacKay M.D., Verseghy D.L. Modified snow algorithms in the Canadian land surface scheme: Model runs and sensitivity analysis at three boreal forest stands // Atmosphere-Ocean. 2006. 44. № 3. P. 207–222. https://doi.org/10.3137/ao.440301
- Chandrasekhar S. Radiative transfer. New York: Dover Publications, 2016. 393 p.
- Danabasoglu G., Lamarque J.F., Bacmeister J., Bailey D.A., DuVivier A.K., Edwards J., Emmons L.K., Fasullo J., Garcia R., Gettelman A., Hannay C., Holland M.M., Large W.G., Lauritzen P.H., Lawrence D.M., Lenaerts J.T.M., Lindsay K., Lipscomb W.H., Mills M.J., Neale R., Oleson K.W., Otto‐BliesnerB., Phillips A.S., Sacks W., Tilmes S., Van Kampenhout L., Vertenstein M., Bertini A., Dennis J., Deser C., Fischer C., Fox‐Kemper B., Kay J.E., Kinnison D., Kushner P.J., Larson V.E., Long M.C., Mickelson S., Moore J.K., Nienhouse E., Polvani L., Rasch P.J., Strand W.G. The Community Earth System Model Version 2 (CESM2) // Journ. Adv Model Earth System 2020. 12 (2). P. e2019MS001916. https:// doi.org/10.1029/2019MS001916
- Dang C., Zender C.S., Flanner M.G. Intercomparison and improvement of two-stream shortwave radiative transfer schemes in Earth system models for a unified treatment of cryospheric surfaces // The Cryosphere. 2019. V. 13. P. 2325–2343. https://doi.org/10.5194/tc-13-2325-2019
- Decharme B., Brun E., Boone A., Delire C., Le Moigne P., Morin S. Impacts of snow and organic soils parameterization on northern Eurasian soil temperature profiles simulated by the ISBA land surface model // The Cryosphere. 2016. V. 10. № 2. P. 853–877. https:// doi.org/10.5194/tc-10-853-2016
- Dickinson R., Henderson-Sellers A., Kennedy P. Biosphere-Atmosphere Transfer Scheme (BATS) Version le as Coupled to the NCAR Community Climate Model. 1993. 80 p. https://doi.org/10.5065/D67W6959
- Flanner M.G., Arnheim J.B., Cook J.M., Dang C., He C., Huang X., Singh D., Skiles S.M., Whicker C.A., Zender C.S. SNICAR-ADv3: a community tool for modeling spectral snow albedo // Geosci. Model Dev. 2021. V. 14. P. 7673–7704. https://doi.org/10.5194/gmd-14-7673-2021
- He C., Liou K.-N., Takano Y., Yang P., Qi L., Chen F. Impact of Grain Shape and Multiple Black Carbon Internal Mixing on Snow Albedo: Parameterization and Radiative Effect Analysis // Journ. of Geophysical Research: Atmospheres. 2018. V. 123. № 2. P. 1253–1268. https://doi.org/10.1002/2017JD027752
- Hedstrom N., Pomeroy J.W. Intercepted snow in boreal forest: measurement and modelling // Hydrol. Process. 1998. V. 12. № 11-12. P. 1611–1625. https://doi.org/10.1002/(SICI)1099-1085(199808/09)12:10/11<1611::AID-HYP684>3.0.CO;2-4
- Krinner G., Derksen C., Richard E. ESM-SnowMIP: assessing snow models and quantifying snow-related climate feedbacks // Geosci. Model Dev. 2018. V. 11. P. 5027–5049. https://doi.org/10.5194/gmd-11-5027-2018
- Landry C. C., Buck K.A., Raleigh M.S., Clark M.P. Mountain system monitoring at Senator Beck Basin, San Juan Mountains, Colorado: A new integrative data source to develop and evaluate models of snow and hydrologic processes // Water Resource Research 2014. V. 50. P. 1773–1788. https://doi.org/10.1002/2013WR013711
- Lee W.Y., Gim H.J., Park S.K. Parameterizations of Snow Cover, Snow Albedo and Snow Density in Land Surface Models: A Comparative Review // Asia-Pacific Journal of Atmospheric Science. 2023. V. 60. P. 185–210. https://doi.org/10.1007/s13143-023-00344-2
- Lejeune Y., Dumont M., Panel J.M., Lafaysse M., Lapalus P., Le Gac E., Lesaffre B., Morin S. 57 years (1960–2017) of snow and meteorological observations from a mid-altitude mountain site (Col de Porte, France, 1325 m alt.) // Earth System Science Data. 2019. V. 11. P. 71–88. https://doi.org/10.5194/essd-11-71-2019
- Menard C., Essery R., Turkov D. Scientific and human errors in a snow model intercomparison // Bulletin of the American Meteorological Society. 2021. V. 201. № 1. P. E61–E79. https://doi.org/10.1175/BAMS-D-19-0329.1
- Rowe P.M., Fergoda M., Neshyba S. Temperature‐Dependent Optical Properties of Liquid Water From 240 to 298 K // JGR Atmospheres. 2020. V. 125. № 17. P. e2020JD032624. https://doi.org/10.1029/2020JD032624
- Snow and Climate. Ed. by R.L. Armstrong, E. Brun. Cambridge, U.K. Cambridge Univ. Press, 2008. 222 p.
- Stamnes K., Tsay S.C., Wiscombe W., Jayaweera K. Numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media // Applied Opt. 1988. V. 27. № 12. P. 2502. https://doi.org/10.1364/AO.27.002502
- Vavrus S. The role of terrestrial snow cover in the climate system // Climate Dynamics. 2007. V. 29. P. 73–88. https://doi.org/10.1007/s00382-007-0226-0
- Verseghy D. CLASS–The Canadian land surface scheme (version 3.6) // Environment Canada Science and Technology Branch Tech. Rep. 2012.
- Vionnet V., Brun E., Morin S., Boone A., Faroux S., Moigne P.L., Martin E., Willemet J.M. The detailed snowpack scheme Crocus and its implementation in SURFEX v7.2 // Geoscientific Model Development. 2012. V. 5. P. 773–791. https://doi.org/10.5194/gmd-5-773-2012
- Warren S.Q. Optical Properties of Snow // Reviews of Geophysics. 1982. V. 20. P. 67–89. https://doi.org/10.1029/RG020i001p00067
- Warren S.G., Brandt R.E. Optical constants of ice from the ultraviolet to the microwave: A revised compilation // Journal of Geophys. Research. 2008. V. 113. D14220 P. 2007JD009744. https://doi.org/10.1029/2007JD009744
- Wever N., Schmid L., Heilig A., Eisen O., Fierz C., Lehning M. Verification of the multi-layer SNOWPACK model with different water transport schemes // The Cryosphere. 2015. V 9. P. 2271–2293. https://doi.org/10.5194/tc-9-2271-2015
- Whicker C.A., Flanner M.G., Dang C., Zender C.S., Cook J.M., Gardner A.S. SNICAR-ADv4: a physically based radiative transfer model to represent the spectral albedo of glacier ice // The Cryosphere. 2022. V. 16. P. 1197–1220. https://doi.org/10.5194/tc-16-1197-2022
- Wiscombe W.J., Warren S.G. A model for the spectral albedo of snow. I: Pure snow // Journal of Atmosphere Science. 1980. V. 37. P. 2712–2733. https://doi.org/10.1175/1520-0469(1980)037<2712:AMFTSA>2.0.CO;2
Дополнительные файлы
