Model assessments of the Northern Hemisphere continental permafrost changes in the 21st century

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Using the results of simulations with an ensemble of Coupled Model Intercomparison Project 6 (CMIP6) models, an analysis of the regimes of the Northern Hemisphere continental permafrost in the 21st century was carried out under various scenarios of anthropogenic forcing. It is noted that the modern boundaries of the permafrost in Northern Eurasia and North America are realistically reproduced using various frost indices based on air temperature and ground temperature. Using various indices, the near-surface permafrost area at the beginning of the 21st century. estimated in the range of 11.5–13.1 million km2. At the same time, the range of the near-surface permafrost area estimates based on simulations with CMIP6 models using the ground temperature is about 11 million km2, which is half as much as similar estimates for the previous generation CMIP5 models. The maximum value of the area trend in the 21st century (–125 thousand km2/ year), obtained under the most aggressive scenario ssp5-8.5 is almost twice as large in absolute value as under the least aggressive scenario ssp1.2-6. A decrease in the sensitivity of the permafrost area to changes in global air temperature from the least aggressive to the most aggressive scenario of anthropogenic impacts was revealed: –3.3 million km2/°С under scenario ssp1-2.6, –2.9 million km2/°С under scenario ssp2-4.5 and –2.1 million km2/°С under scenario ssp5-8.5. Analysis of the results showed that with an increase in the rate of global warming for the most aggressive anthropogenic scenarios, a significant increase in temperature in high latitudes leads to rapid degradation of the permafrost in the second half of the 21st century in the north of Eurasia, and according to certain models in Tibet and North America with the exception Canadian Arctic.

About the authors

M. M. Arzhanov

Obukhov Institute of Atmospheric Physics, Russian Academy of Sciences

Author for correspondence.
Email: arzhanov@ifaran.ru
Russian Federation, Moscow

I. I. Mokhov

Obukhov Institute of Atmospheric Physics, Russian Academy of Sciences; Moscow State University

Email: arzhanov@ifaran.ru
Russian Federation, Moscow; Moscow

References

  1. Anisimov O.A., Nelson F.E. Application of mathematical models to investigation of the climate – permafrost coupling. Russian Meteorology and Hydrology. 1990, 10: 13–19 [In Russian].
  2. Anisimov O.A., Velichko A.A., Demchenko P.F., Eliseev A.V., Mokhov I.I., Nechaev V.P. Effect of climate change on permafrost in the past, present and future. Izvestiya RAN. Fizika atmosfery i okeana. Proc. of the RAS. Physics of the atmosphere and ocean. 2002, 38 (1): 25–39 [In Russian].
  3. Arzhanov M.M., Demchenko P.F., Eliseev A.V., Mokhov I.I. Simulation of characteristics of thermal and hydrologic soil regimes in equilibrium numerical experiments with a climate model of intermediate complexity. Izvestiya RAN. Fizika atmosfery i okeana. Proc. of the RAS. Physics of the atmosphere and ocean. 2008, 44 (5): 591–610 [In Russian].
  4. Arzhanov M.M., Eliseev A.V., Demchenko P.F., Mokhov I.I., Khon V.Ch. Simulation of thermal and hydrological regimes of Siberian river watersheds under permafrost conditions from reanalysis data. Izvestiya RAN. Fizika atmosfery i okeana. Proc. of the RAS. Physics of the atmosphere and ocean. 2008, 44 (1): 86–93 [In Russian].
  5. Arzhanov M.M., Demchenko P.F., Eliseev A.V., Mokhov I.I. Modelling of subsidence of perennially frozen soil due to thaw for the Northern Hemisphere during the 21st century. Kriosfera Zemli. Cryosphere of the Earth. 2010, XIV (3): 37–42 [In Russian].
  6. Arzhanov M.M., Eliseev A.V., Mokhov I.I. Impact of climate changes over the extratropical land on permafrost dynamics under rcp scenarios in the 21st century as simulated by the IAP RAS climate model. Meteorologiya i gidrologiya. Meteorology and hydrology. 2013, 7: 31–42 [In Russian].
  7. Arzhanov M.M., Mokhov I.I. Temperature trends in the permafrost of the Northern Hemisphere: comparison of model calculations with observations. Doklady Rossiiskoy Akademii Nauk. Reports of the Academy of Sciences. 2013, 449 (1): 87–92 [In Russian].
  8. Arzhanov M.M., Mokhov I.I. Model assessments of organic carbon amounts released from long-term permafrost under scenarios of global warming in the 21st century. Doklady Rossiiskoy Akademii Nauk. Reports of the Academy of Sciences. 2014, 455 (3): 328–331 [In Russian].
  9. Arzhanov M.M., Mokhov I.I. Stability of Continental Relic Methane Hydrates for the Holocene Climatic Optimum and for Contemporary Conditions. Doklady Rossiiskoy Akademii Nauk. Reports of the Academy of Sciences. 2017, 476 (4): 456–460 [In Russian].
  10. Arzhanov M.M., Malakhova V.V. Modeling the accumulation and transition to the relic state of methane hydrates in the permafrost of Northwestern Siberia. Fizika Zemli. Physics of the Earth. 2023, (2): 149–161 [In Russian].
  11. Babkina E.A., Leibman M.O., Dvornikov Y.A., Fakashchuk N.Yu., Khairullin R.R., Khomutov A.V. Activation of cryogenic processes in Central Yamal as a result of regional and local change in climate and thermal state of permafrost. Meteorologiya i gidrologiya. Meteorology and hydrology. 2019, (4): 99–109 [In Russian].
  12. Demchenko P.F., Velichko A.A., Eliseev A.V., Mokhov I.I., Nechaev V.P. Dependence of Permafrost Conditions on Global Warming: Comparison of Models, Scenarios, and Paleoclimatic Reconstructions. Izvestiya RAN. Fizika atmosfery i okeana. Proc. of the RAS. Physics of the atmosphere and ocean. 2002, 38 (2): 165–174 [In Russian].
  13. Demchenko P.F., Eliseev A.V., Arzhanov M.M., Mokhov I.I. Impact of Global Warming Rate on Permafrost Degradation. Izvestiya RAN. Fizika atmosfery i okeana. Proc. of the RAS. Physics of the atmosphere and ocean. 2006, 42 (1): 35–43 [In Russian].
  14. Denisov S.N., Eliseev A.V., Mokhov I.I., Arzhanov M.M. Model Estimates of Global and Regional Atmospheric Methane Emissionsof Wetland Ecosystems. Izvestiya RAN. Fizika atmosfery i okeana. Proc. of the RAS. Physics of the atmosphere and ocean. 2015, 51 (5): 543–549 [In Russian].
  15. Eliseev A.V., Mokhov I.I., Arzhanov M.M., Demchenko P.F., Denisov S.N. Interaction of the methane cycle and processes in wetland ecosystems in a climate model of intermediate complexity. Izvestiya RAN. Fizika atmosfery i okeana. Proc. of the RAS. Physics of the atmosphere and ocean. 2008, 44 (2): 147–162 [In Russian].
  16. Mokhov I.I., Demchenko P.F., Eliseev A.V., Khon V.Ch., Khvorost’yanov D.V. Estimation of global and regional climate changes during the 19–21st centuries on the basis of the IAP RAS model with consideration for anthropogenic forcing. Izvestiya RAN. Fizika atmosfery i okeana. Proc. of the RAS. Physics of the atmosphere and ocean. 2002, 38 (5): 629–642 [In Russian].
  17. Mokhov I.I., Eliseev A.V., Demchenko P.F., Khon V.Ch., Akperov M.G., Arzhanov M.M., Karpenko A.A., Tikhonov V.A., Chernokulsky A.V., Sigaeva E.V. Climate changes and their assessment based on the IAP RAS global model simulations. Doklady Rossiiskoy Akademii Nauk. Reports of the Academy of Sciences. 2005, 402 (2): 243–247 [In Russian].
  18. Mokhov I.I., Eliseev A.V., Arzhanov M.M., Demchenko P.F., Denisov S.N., Karpenko A.A. Modelirovanie izmenenij klimata v vysokih shirotah s ispol’zovaniem klimaticheskoj modeli IFA RAN. Izmenenie okruzhayushchej sredy i klimata. Prirodnye processy v polyarnyh oblastyah Zemli. Modeling climate change at high latitudes using the IAP RAS climate model. Environmental and climate change. V. III. Pt. II. Natural processes in the polar regions of the Earth. Moscow: Institute of Geography RAS, 2008: 13–19 [In Russian].
  19. Mokhov I.I., Eliseev A.V. Modeling of global climate variations in the 20th–21st centuries with new RCP scenarios of anthropogenic forcing. Doklady Rossiiskoy Akademii Nauk. Reports of the Academy of Sciences. 2012, 443 (6): 732–736 [In Russian].
  20. Mokhov I.I., Malakhova V.V., Arzhanov M.M. Model estimates of intra- and intersentennial degradation of permafrost on the Yamal peninsula under warming. Doklady Rossiiskoy Akademii Nauk. Reports of the Academy of Sciences. 2022, 506 (2): 97–104.
  21. Mokhov I.I., Khon V.Ch. Hydrological regime in siberian river basins: model estimates of changes in the 21st century. Meteorologiya i gidrologiya. Meteorology and Hydrology. 2002, 2: 77–91 [In Russian].
  22. Pavlov A.V., Malkova G.V. Small-scale mapping of trends of the contemporary ground temperature changes in the Russian North. Kriosfera Zemli. Cryosphere of the Earth. 2009, XIII (4): 32–39 [In Russian].
  23. Pavlova T.V., Kattsov V.M., Nadyozhina Ye.D., Sporyshev P.V., Govorkova V.A. Terrestrial cryosphere evolution through the xx and xxi centuries as simulated with the new generation of global climate models. Kriosfera Zemli. Cryosphere of the Earth. 2007, XI (2): 3–13 [In Russian].
  24. Alexeev V.A., Nicolsky D.J., Romanovsky V.E., Lawrence D.M. An evaluation of deep soil configurations in the CLM3 for improved representation of permafrost. Geophys. Research Leters. 2007, 34 (9): L09502.
  25. Alexandrov G.A., Ginzburg V.A., Insarov G.E. CMIP6 model projections leave no room for permafrost to persist in Western Siberia under the SSP5-8.5 scenario. Climatic Change. 2021, 169: 42. https://doi.org/10.1007/s10584-021-03292-w
  26. Anisimov O.A., Nelson F.E. Permafrost distribution in the Northern Hemisphere under scenarios of climatic change. Global Planetary Change. 1996, 14: 59–72.
  27. Anisimov O., Zimov S. Thawing permafrost and methane emission in Siberia: Synthesis of observations, reanalysis, and predictive modeling. Siberian Environmental Change. 2020, 50: 2050–2059.
  28. Arzhanov M.M., Malakhova V.V., Mokhov I.I. Modeling thermal regime and evolution of the methane hydrate stability zone of the Yamal peninsula permafrost. Permafrost Periglac. Process. 2020, 31: 487–496.
  29. Biskaborn B.K., Smith S.L., Noetzli J. Permafrost is warming at a global scale. Nat. Commun. 2019, 10: 264. https://doi.org/0.1038/s41467-018-08240-4
  30. Brown J.O.F., Heginbottom J.A., Melnikov E. Circum-Arctic Map of Permafrost and Ground-Ice Conditions, Version 2. Boulder, Colorado, USA: NASA, 2002. https://doi.org/10.7265/skbg-kf16
  31. Burke E.J., Zhang Y., Krinner G. Evaluating permafrost physics in the Coupled Model Intercomparison Project 6 (CMIP6) models and their sensitivity to climate change. The Cryosphere. 2020, 14: 3155–3174.
  32. Chadburn S.E., Burke E.J., Cox P.M., Friedlingstein P., Hugelius G., Westermann S. An observation-based constraint on permafrost loss as a function of global warming. Nature Clim. Change. 2017, 7: 340–344.
  33. Dvornikov Yu.A., Leibman M.O., Khomutov A.V. Gas‐emission craters of the Yamal and Gydan peninsulas: A proposed mechanism for lake genesis and development of permafrost landscapes. Permafrost Periglac. Process. 2019, 30: 146–162.
  34. Eyring V., Bony S., Meehl G.A., Senior C.A., Stevens B., Stouffer R.J., Taylor K.E. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 2016, 9: 1937–1958. https://doi.org/10.5194/gmd-9-1937-2016
  35. Gelfan A., Gustafsson D., Motovilov Y., Arheimer B., Kalugin A., Krylenko I., Lavrenov A. Climate change impact on the water regime of two great Arctic rivers: modeling and uncertainty issues. Climatic Change. 2017, 141: 499–515. https://doi.org/10.1007/s10584-016-1710-5
  36. Guo D., Wang H. CMIP5 permafrost degradation projection: A comparison among different regions. J. Geophys. Res. Atmos. 2016, 121: 4499–4517.
  37. Hugelius G., Bockheim J.G., Camill P. A new data set for estimating organic carbon storage to 3 m depth in soils of the northern circumpolar permafrost region. Earth Syst. Sci. Data 2013, 5: 393–402.
  38. IPCC, 2022: Climate Change 2022: Impacts, Adaptation, and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 2022: 3056 p. https://doi.org/10.1017/9781009325844
  39. Jorgenson M.T., Racine C.H., Walters J.C. Permafrost Degradation and Ecological Changes Associated with a Warming Climate in Central Alaska. Climatic Change. 200, 48: 551–579.
  40. Kizyakov A., Zimin M., Sonyushkin A., Dvornikov Yu., Khomutov A., Leibman M. Comparison of gas emission crater geomorphodynamics on Yamal and Gydan peninsulas (Russia), based on repeat very-high-resolution stereopairs. Remote Sens. 2017, 9: 1023–1036.
  41. Kleinen T., Brovkin V. Pathway-dependent fate of permafrost region carbon. Environment Research Letters. 2018, 13: 094001.
  42. Lawrence D.M., Slater A.G. A projection of severe near-surface permafrost degradation during the 21st century. Geophys. Research Letters. 2005, 32 (24): L24401.
  43. Nelson F., Outcalt S. A computational method for prediction and regionalization of permafrost. Arctic and Alpine Research. 1987, 19 (3): 279–288.
  44. Obu J., Westermann S., Bartsch A. Northern Hemisphere permafrost map based on TTOP modelling for 2000–2016 at 1 km2 scale. Earth-Science Reviews. 2019, 193: 299–316.
  45. Schuur E.A.G., McGuire A.D., Schadel C. Climate change and the permafrost carbon feedback. Nature. 2015, 520: 171–179.
  46. Smith S.L., Romanovsky V.E., Lewkowicz A.G., Burn C.R., Allard M., Clow G.D., Yoshikawa K., Throop J. Thermal State of Permafrost in North America: A Contribution to the International Polar Year. Permafrost Periglac. Process. 2010, 21: 117–135.
  47. Stendel M., Christensen J.H. Impact of global warming on permafrost condition in a coupled GCM. Geophys. Research Letters. 2002, 29 (13): 1632.
  48. Slater A.G., Lawrence D.M. Diagnosing present and future permafrost from climate models. Journal of Climate. 2013, 26: 5608–5623.
  49. Taylor K.E., Stouffer R.J., Meehl G.A. An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc. 2012, 93: 485–498. https://doi.org/10.1175/BAMS-D-11-00094.1
  50. van Vuuren D.P., Edmonds J., Kainuma M. The representative concentration pathways: an overview. Climatic Change. 2011, 109: 5–31. https://doi.org/10.1007/s10584-011-0148-z
  51. Vasiliev A.A, Drozdov D.S., Gravis A.G., Malkova G.V., Nyland K.S., Streletskiy D.A. Permafrost degradation in the Western Russian Arctic. Environmental Research Letters. 2020, 15 (4): 045001.
  52. Wahlen M. The global methane cycle. Annu. Rev. Earth Planet. Sci. 1993, 21: 407–426.
  53. Wagner A.M., Lindsey N.J., Dou S. Permafrost degradation and subsidence observations during a controlled warming experiment. Sci Rep. 2018, 8: 10908. https://doi.org/10.1038/s41598-018-29292-y
  54. Zhang T., Barry R.G., Knowles K., Heginbottom J.A., Brown J. Statistics and characteristics of permafrost and ground-ice distribution in the Northern Hemisphere. Polar Geography. 2008, 31 (1–2): 47–68.
  55. Zhang T., Stamnes K. Impact of climatic factors on the active layer and permafrost at Barrow, Alaska. Permafrost and Periglacial Processes. 1998, 9 (3): 229–246.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».