Solution of the One-Dimensional Stefan Problem with Two Transitions for Modelling of the Water Freezing in a Glacial Crevasse

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

This article presents a numerical solution of the one-dimensional Stefan problem with two phase transitions, which is implemented on a non-uniform grid. The system of equations is written in a general form, i.e. it includes not only conductive, but also convective and dissipative terms. The problem is solved numerically by the front-fixing method on a non-uniform grid using an implicit finite-difference scheme, which is implemented by the sweep method. This algorithm can also be used to create more complex mathematical models of heat and mass transfer, as well as to describe glacial and subglacial processes. The mathematical apparatus proposed in the article was used to solve a specific problem of water freezing in a glacial crevasse. The presence and progression of crevasses, in turn, is a demonstrative factor indicating the dynamic activity of the glacier. Crevasses formed in one way or another can not only expand, but also decrease in size until they completely disappear. One of the reasons for their closure is the freezing of near-surface meltwater in the crevasse. Such a process was observed on glaciers near Mirny and Novolazarevskaya stations (East Antarctica). This process is modeled as an example of solving the Stefan problem. It is believed that all media are homogeneous and isotropic. The temperature of the water in the crevasse corresponds to the melting temperature of the ice. Modeling has shown that for the coastal part of the cold Antarctic glacier with an average temperature of –10°C and below, crevasses 5–10 cm of width freeze in less than a week. Wider ones freeze a little longer. 30 cm wide crevasses close in about two to three weeks, depending on the temperature of the glacier.

About the authors

S. V. Popov

Polar Marine Geosurvey Expedition; Saint-Petersburg State University; Melnikov Permafrost Institute

Author for correspondence.
Email: spopov67@yandex.ru
Russia, St. Petersburg; Russia, St. Petersburg; Russia, Yakutsk

References

  1. Glazovsky A.F., Macheret Yu.Ya. Voda v lednikakh. Metody i rezul’taty geofizicheskikh i distantsionnykh issledovaniy. Water in glaciers. Methods and results of geophysical and remote sensing studies. M.: GEOS, 2014: 528 p. [In Russian].
  2. Kazko G.V., Savatyugin L.M., Sokratova I.N. Modeling of water circulation in the Antarctic subglacial Lake Vostok. Led i Sneg. Ice and Snow. 2012, 52 (4): 86–91 [In Russian]. https://doi.org/10.15356/2076-6734-2012-4-86-91
  3. Kraslou G., Edger D. Teploprovodnost’ tverdyh tel. Thermal conductivity of solids. Moscow: Nauka, 1964: 488 p. [In Russian].
  4. Kol’tsova E., Skichko A., Zhensa A. Chislennye metody re-sheniya uravnenii matematicheskoi fiziki i khimii. Numerical methods for solving equations of mathematical physics and chemistry. Moscow: Yurayt, 2020: 220 p. [In Russian].
  5. Kuznetsov G.V., Sheremet M.A. Raznostnye metody resheniya zadach teploprovodnosti. Difference methods for solving problems of thermal conductivity. Tomsk: TPU, 2007: 172 p. [In Russian].
  6. Paterson W.S.B. Fizika lednikov. The physics of glaciers. Moscow: Mir, 1984: 472 p. [In Russian].
  7. Popov S.V., Kashkevich M.P., Boronina A.S. The condition of the runway at Novolazarevskaya Station (East Antarctica) and the safety assessment of its use based on the 2021 research data. Led i Sneg. Ice and Snow. 2022, 62 (4): 621–636 [In Russian].
  8. Popov S.V., Polyakov S.P., Pryakhin S.S., Mart’yanov V.L., Lukin V.V. The structure of the upper part of the glacier in the area of a snow-runway of Mirny Station, East Antarctica (based on the data collected in 2014/15 field season). Kriosfera Zemli. Earth’s Cryosphere. 2017, XXI (1): 73–84 [In Russian].
  9. Rybak O.O., Rybak E.A. Algorithm for solving a system of equations for ice flow in a three-dimensional mathematical model. Izvestiya vysshikh uchebnykh zavedeniy. Severo-Kavkazskiy region. Yestestvennyye nauki, Bulletin of higher educational institutions. North Caucasian region. Natural sciences. 2010, 6: 117–121 [In Russian].
  10. Samarskii A.A. Teoriya raznosnykh skhem. Theory of diversity schemes. Moscow, Nauka, 1977: 656 p. [In Russian]
  11. Smirnov V.I. Kurs vysshei matematiki. The course of higher mathematics. Moscow: Nauka, 1974, 2: 656 p. [In Russian].
  12. Tihonov A.N., Samarskii A.A. Uravneniya matematicheskoj fiziki. Equations of mathematical physics. Moscow: Nauka, 1977: 736 p. [In Russian].
  13. Alley R.B., Dupont T.K., Parizek B.R., Anandakrishnan S. Access of surface meltwater to beds of sub-freezing glaciers: preliminary insights. Annals of Glaciology. 2005, 40: 8–14.
  14. Budd W.F. The dynamics of ice masses. ANARE Sci. Rep. Publ. 1969, 108: 212.
  15. Greve R. A continuum–mechanical formulation for shallow polythermal ice sheets. Philos. Trans. Royal. Society. London, 1997, 355 (1726): 921–974.
  16. Greve R., Blatter H. Dynamics of ice sheets and glaciers. Springer Science & Business Media, 2009: 300 p.
  17. Huybrechts P. The Antarctic ice sheet and environmental change: a three-dimensional modelling study. Ber. Polarforsch. 1992, 99: 244 p.
  18. Nye J.F. Water flow in glaciers: jökulhlaups, tunnels, and veins. Journ. of Glaciology. 1976, 17 (76): 181–207.
  19. Pattyn F. A new three-dimensional higher-order thermomechanical ice sheet model: Basic sensitivity, ice stream development, and ice flow across subglacial lakes. Journ. of Geophys. Research. 2003, 108 (B8): 2382.
  20. Poinar K., Joughin I., Lilien D., Brucker L., Kehrl L., Nowicki S. Drainage of Southeast Greenland Firn Aquifer Water through Crevasses to the Bed. Journ. of Front. Earth Sci. 2017, 5: 5. https://doi.org/10.3389/feart.2017.00005.
  21. Thoma M., Grosfeld K., Mayer C. Modelling mixing and circulation in subglacial Lake Vostok, Antarctica. Ocean Dynamics. 2007,57 (6): 531–540.
  22. van der Veen C.J. Fracture propagation as means of rapidly transferring surface meltwater to the base of glaciers. Geophys. Research Letters. 2007, 34: L01501. https://doi.org/10.1029/2006GL028385.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (1MB)
3.

Download (310KB)
4.

Download (195KB)
5.

Download (1MB)
6.

Download (125KB)

Copyright (c) 2023 С.В. Попов

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».