Роль длинных некодирующих РНК в ишемическом инсульте


Цитировать

Полный текст

Аннотация

Ишемический инсульт (ИИ) является одной из ведущих причин смерти и инвалидности. Последствия ИИ проявляются глубокой и стойкой неврологической симптоматикой. Используемые в настоящее время методы лечения ИИ оказались недостаточными, отчасти из-за неполного понимания молекулярных механизмов при ИИ. Длинные некодирующие РНК (длРНК) имеют длину более 200 нуклеотидов и контролируют транскрипцию, трансляцию, регуляцию экспрессии генов, регуляцию клеточного цикла, апоптоз, пролиферацию и дифференцировку клеток. длРНК играют непосредственную роль в патогенезе многих заболеваний человека, включая ИИ. длРНК обнаруживаются в биологических жидкостях человека: крови, моче, спинномозговой жидкости и слюне. Профиль экспрессии таких циркулирующих длРНК представляет собой определенную часть клеток, в которых они модифицируются и секретируются в соответствии с физиологическими или патологическими состояниями этих клеток. Благодаря своим различным формам транспорта из клеток в биологические жидкости человека в составе экзосом или липосом длРНК защищены от воздействия РНКаз и остаются в стабильной форме. В связи с этим циркулирующие длРНК рассматриваются как новые биомаркеры, представляющие интерес при многих заболеваниях, включая ИИ. Вероятно, длРНК имеет потенциал для использования в терапии, диагностике и прогнозировании ИИ.

Об авторах

Лилия Бареевна Новикова

ФГБОУ ВО «Башкирский государственный медицинский университет»

Автор, ответственный за переписку.
Email: novicova@inbox.ru
Россия, Уфа

Ильгиз Фанилевич Гареев

ФГБОУ ВО «Башкирский государственный медицинский университет»

Email: novicova@inbox.ru
Россия, Уфа

Антон Алексеевич Раскуражев

ФГБНУ «Научный центр неврологии»

Email: novicova@inbox.ru
Россия, Москва

Озал Арзуманоглы Бейлерли

ГБУЗ РБ «Больница скорой медицинской помощи»

Email: novicova@inbox.ru
Россия, Уфа

Гузель Мударисовна Минибаева

ФГБОУ ВО «Башкирский государственный медицинский университет»

Email: novicova@inbox.ru
Уфа

Список литературы

  1. Chaudhary D., Abedi V., Li J. et al. Clinical risk score for predicting recurrence following a cerebral ischemic event. Front Neurol 2019; 10: 1106. doi: 10.3389/fneur.2019.01106. PMID: 31781015.
  2. Liamis G., Barkas F., Megapanou E. et al. Hyponatremia in acute stroke patients: pathophysiology, clinical significance, and management options. Eur Neurol 2019: 1-9. doi: 10.1159/000504475. PMID: 31722353.
  3. Jathar S., Kumar V., Srivastava J., Tripathi V. Technological developments in lncRNA biology. Adv Exp Med Biol 2017; 1008: 283–323. doi: 10.1007/978-981-10-5203-3_10. PMID: 28815544.
  4. Zhang X., Hong R., Chen W. et al. The role of long noncoding RNA in major human disease. Bioorg Chem 2019; 92: 103214. doi: 10.1016/j.bioorg.2019.103214. PMID: 31499258.
  5. Henshall D.C. Epigenetics and noncoding RNA: Recent developments and future therapeutic opportunities. Eur J Paediatr Neurol 2019; 24: 30–34. doi: 10.1016/j.ejpn.2019.06.002. PMID: 31235424.
  6. Gutiérrez-Vargas J.A., Cardona-Gómez G.P. Considering risk factors for the effectiveness of translational therapies in brain stroke. J Neurol Sci 2019; 408: 116547. doi: 10.1016/j.jns.2019.116547. PMID: 31683050.
  7. Cipolla M.J., Liebeskind D.S., Chan S.L. The importance of comorbidities in ischemic stroke: Impact of hypertension on the cerebral circulation. J Cereb Blood Flow Metab 2018; 38: 2129–2149. doi: 10.1177/0271678X18800589. PMID: 30198826.
  8. Al Kasab S., Derdeyn C.P., Guerrero W.R. et al. Intracranial large and medium artery atherosclerotic disease and stroke. J Stroke Cerebrovasc Dis 2018; 27: 1723–1732. doi: 10.1016/j.jstrokecerebrovasdis.2018.02.050. PMID: 29602616.
  9. Zhang L., Zhou C., Qin Q. et al. LncRNA LEF1-AS1 regulates the migration and proliferation of vascular smooth muscle cells by targeting miR-544a/PTEN axis. J Cell Biochem 2019; 120: 14670–14678. doi: 10.1002/jcb.28728. PMID: 31016789.
  10. Cui C., Wang X., Shang X.M. et al. lncRNA 430945 promotes the proliferation and migration of vascular smooth muscle cells via the ROR2/RhoA signaling pathway in atherosclerosis. Mol Med Rep 2019; 19: 4663–4672. doi: 10.3892/mmr.2019.10137. PMID: 30957191.
  11. Yu H., Ma S., Sun L. et al. TGF‑β1 upregulates the expression of lncRNA‑ATB to promote atherosclerosis. Mol Med Rep 2019; 19: 4222–4228. doi: 10.3892/mmr.2019.10109. PMID: 30942415.
  12. Lu Q., Meng Q., Qi M. et al. Shear-sensitive lncRNA AF131217.1 inhibits inflammation in HUVECs via regulation of KLF4. Hypertension 2019; 73: e25–e34. doi: 10.1161/HYPERTENSIONAHA.118.12476. PMID: 30905197.
  13. Zhuo X., Wu Y., Yang Y. et al. LncRNA AK094457 promotes AngII-mediated hypertension and endothelial dysfunction through suppressing of activation of PPARγ. Life Sci 2019; 233: 116745. doi: 10.1016/j.lfs.2019.116745. PMID: 31404524.
  14. Xue Y.Z., Li Z.J., Liu W.T. et al. Down-regulation of lncRNA MALAT1 alleviates vascular lesion and vascular remodeling of rats with hypertension. Aging (Albany NY) 2019; 11: 5192–5205. doi: 10.18632/aging.102113. PMID: 31343412.
  15. Fang G., Qi J., Huang L., Zhao X. LncRNA MRAK048635_P1 is critical for vascular smooth muscle cell function and phenotypic switching in essential hypertension. Biosci Rep 2019; 39. pii: BSR20182229. doi: 10.1042/BSR20182229. PMID: 3083363.
  16. Akella A., Bhattarai S., Dharap A. Long noncoding RNAs in the pathophysiology of ischemic stroke. Neuromolecular Med 2019; 21: 474–483. doi: 10.1007/s12017-019-08542-w. PMID: 31119646.
  17. Liang J., Wang Q., Li J.Q., et al. Long non-coding RNA MEG3 promotes cerebral ischemia-reperfusion injury through increasing pyroptosis by targeting miR-485/AIM2 axis. Exp Neurol 2019: 113139. doi: 10.1016/j.expneurol.2019.113139. PMID: 31794744.
  18. Xiao Z., Qiu Y., Lin Y. et al. Blocking lncRNA H19-miR-19a-Id2 axis attenuates hypoxia/ischemia induced neuronal injury. Aging (Albany NY) 2019; 11: 3585–3600. doi: 10.18632/aging.101999. PMID: 31170091.
  19. Han D., Zhou Y.YY1-induced upregulation of lncRNA NEAT1 contributes to OGD/R injury-induced inflammatory response in cerebral microglial cells via Wnt/β-catenin signaling pathway. In Vitro Cell Dev Biol Anim 2019; 55: 501–511. doi: 10.1007/s11626-019-00375-y. PMID: 31586366.
  20. Yang X., Zi X.H. LncRNA SNHG1 alleviates OGD induced injury in BMEC via miR-338/HIF-1α axis. Brain Res 2019; 1714: 174–181. doi: 10.1016/j.brainres.2018.11.003. PMID: 30414401.
  21. Wang Y., Li G., Zhao L., Lv J. Long noncoding RNA HOTTIP alleviates oxygen‐glucose deprivation‐induced neuronal injury via modulating miR‐143/hexokinase 2 pathway. J Cell Biochem 2018; 119: 10107–10117. doi: 10.1002/jcb.27348. PMID: 30129112.
  22. Wu L., Ye Z., Pan Y. et al. Vascular endothelial growth factor aggravates cerebral ischemia and reperfusion-induced bloodbrain-barrier disruption through regulating LOC102640519/HOXC13/ZO-1 signaling. Exp Cell Res 2018; 369: 275–283. doi: 10.1016/j.yexcr.2018.05.029. PMID: 29842876.
  23. Wen Y., Yu Y., Fu X. LncRNA Gm4419 contributes to OGD/R injury of cerebral microglial cells via IκB phosphorylation and NF-κB activation. Biochem Biophys Res Commun 2017; 487: 923–929. doi: 10.1016/j.bbrc.2017.05.005. PMID: 28476620.
  24. Nowak-Sliwinska P., Alitalo K., Allen E. et al. Consensus guidelines for the use and interpretation of angiogenesis assays. Angiogenesis 2018; 21: 425–532. doi: 10.1007/s10456-018-9613-x. PMID: 29766399.
  25. Ruan L., Wang B., ZhuGe Q., Jin K. Coupling of neurogenesis and angiogenesis after ischemic stroke. Brain Res 2015; 1623: 166–173. doi: 10.1016/j.brainres.2015.02.042. PMID: 25736182.
  26. Li L., Wang M., Mei Z. et al. LncRNAs HIF1A-AS2 facilitates the up-regulation of HIF-1alpha by sponging to miR-153-3p, whereby promoting angiogenesis in HUVECs in hypoxia. Biomed Pharmacother 2017; 96: 165–172. doi: 10.1016/j.biopha.2017.09.113. PMID: 28985553.
  27. Zhan R., Xu K., Pan J. et al. Long noncoding RNA MEG3 mediated angiogenesis after cerebral infarction through regulating p53/NOX4 axis. Biochem Biophys Res Commun 2017; 490: 700–706. doi: 10.1016/j.bbrc.2017.06.104. PMID: 28634073.
  28. Ghosh H.S. Adult neurogenesis and the promise of adult neural stem cells. J Exp Neurosci 2019; 13: 1179069519856876. doi: 10.1177/1179069519856876. PMID: 31285654.
  29. Christian K.M., Ming G.L., Song H. Adult neurogenesis and the dentate gyrus: Predicting function from form. Behav Brain Res 2020; 379: 112346. doi: 10.1016/j.bbr.2019.112346. PMID: 31722241.
  30. Kumar A., Pareek V., Faiq M.A., et al. Adult neurogenesis in humans: a review of basic concepts, history, current research, and clinical implications. Innov Clin Neurosci 2019; 16: 30–37. PMID: 31440399.
  31. Wang J., Cao B., Zhao H. et al. Long noncoding RNA H19 prevents neurogenesis in ischemic stroke through p53/Notch1 pathway. Brain Res Bull 2019; 150: 111–117. doi: 10.1016/j.brainresbull.2019.05.009. PMID: 31102753.
  32. Makris K., Haliassos A., Chondrogianni M., Tsivgoulis G. Blood biomarkers in ischemic stroke: potential role and challenges in clinical practice and research. Crit Rev Clin Lab Sci 2018; 55: 294–328. doi: 10.1080/10408363.2018.1461190. PMID: 29668333.
  33. Bonaventura A., Liberale L., Vecchié A. et al. Update on inflammatory biomarkers and treatments in ischemic stroke. Int J Mol Sci 2016; 17. pii: E1967. doi: 10.3390/ijms17121967. PMID: 27898011.
  34. Pardini B., Sabo A.A., Birolo G., Calin G.A. Noncoding RNAs in extracellular fluids as cancer biomarkers: the new frontier of liquid biopsies. Cancers (Basel) 2019; 11. pii: E1170. doi: 10.3390/cancers11081170. PMID: 31416190.
  35. Viereck J., Thum T. Circulating noncoding RNAs as biomarkers of cardiovascular disease and injury. Circ Res 2017; 120: 381–399. doi: 10.1161/CIRCRESAHA.116.308434. PMID: 28104771.
  36. Li P., Duan S., Fu A. Long noncoding RNA NEAT1 correlates with higher disease risk, worse disease condition, decreased miR‐124 and miR‐125a and predicts poor recurrence‐free survival of acute ischemic stroke. J Clin Lab Anal 2019; 34: e23056. doi: 10.1002/jcla.23056. PMID: 31721299.
  37. Deng Q.W., Li S., Wang H. et al. Differential long noncoding RNA expressions in peripheral blood mononuclear cells for detection of acute ischemic stroke. Clin Sci (Lond) 2018; 132: 1597–1614. doi: 10.1042/CS20180411. PMID: 29997237.
  38. Guo X., Yang J., Liang B. et al. Identification of novel LncRNA biomarkers and construction of LncRNA-related Networks in han chinese patients with ischemic stroke. Cell Physiol Biochem 2018; 50: 2157–2175. doi: 10.1159/000495058. PMID: 30415252.
  39. Feng L., Guo J., Ai F. Circulating long noncoding RNA ANRIL downregulation correlates with increased risk, higher disease severity and elevated pro-inflammatory cytokines in patients with acute ischemic stroke. J Clin Lab Anal 2019; 33: e22629. doi: 10.1002/jcla.22629. PMID: 30069916.
  40. Wang J., Zhao H., Fan Z. et al. Long noncoding RNA H19 promotes neuroinflammation in ischemic stroke by driving histone deacetylase 1–dependent M1 microglial polarization. Stroke 2017; 48: 2211–2221. doi: 10.1161/STROKEAHA.117.017387. PMID: 28630232.
  41. Wang J., Ruan J., Zhu M. et al. Predictive value of long noncoding RNA ZFAS1 in patients with ischemic stroke. Clin Exp Hypertens 2019; 41: 615–621. doi: 10.1080/10641963.2018.1529774. PMID: 30307773.
  42. Zhu M., Li N., Luo P. et al. Peripheral blood leukocyte expression of lncRNA MIAT and its diagnostic and prognostic value in ischemic stroke. J Stroke Cerebrovasc Dis 2018; 27: 326–337. doi: 10.1016/j.jstrokecerebrovasdis.2017.09.009. PMID: 29030044.
  43. Zhang K., Qi M., Yang Y. et al. Circulating lncRNA ANRIL in the serum of patients with ischemic stroke. Clin Lab 2019; 65. doi: 10.7754/Clin.Lab.2019.190143. PMID: 31414760.
  44. Archer K., Broskova Z., Bayoumi A.S. et al. Long non-coding RNAs as master regulators in cardiovascular diseases. Int J Mol Sci 2015; 16: 23651–23667. doi: 10.3390/ijms161023651. PMID: 26445043.
  45. Kumar M.M., Goyal R. LncRNA as a therapeutic target for angiogenesis. Curr Top Med Chem 2017; 17: 1750–1757. doi: 10.2174/1568026617666161116144744. PMID: 27848894.
  46. Zampetaki A., Albrecht A., Steinhofel K. Long non-coding RNA structure and function: is there a link? Front Physiol 2018; 9: 1201. doi: 10.3389/fphys.2018.01201. PMID: 30197605.
  47. Jo J.I., Gao J.Q., Tabata Y. Biomaterial-based delivery systems of nucleic acid for regenerative research and regenerative therapy. Regen Ther 2019; 11: 123–130. doi: 10.1016/j.reth.2019.06.007. PMID: 31338391.
  48. Malissovas N., Ninou E., Michail A., Politis P.K. Targeting long non-coding RNAs in nervous system cancers: new insights in prognosis, diagnosis and therapy. Curr Med Chem 2019; 26: 5649–5663. doi: 10.2174/0929867325666180831170227. PMID: 30182849.
  49. Obermeier B., Verma A., Ransohoff R.M. The blood-brain barrier. Handb Clin Neurol 2016; 133: 39–59. doi: 10.1016/B978-0-444-63432-0.00003-7. PMID: 27112670.
  50. Fu B.M. Transport across the blood-brain barrier. Adv Exp Med Biol 2018; 1097: 235–259. doi: 10.1007/978-3-319-96445-4_13. PMID: 30315549.
  51. Lopez-Ramirez M.A., Reijerkerk A., de Vries H.E., Romero I.A. Regulation of brain endothelial barrier function by microRNAs in health and neuroinflammation. FASEB J 2016; 30: 2662–2672. doi: 10.1096/fj.201600435RR. PMID: 27118674.
  52. Mohanty C., Kundu P., Sahoo S.K. Brain targeting of siRNA via intranasal pathway. Curr Pharm Des 2015; 21: 4606–4613. doi: 10.2174/138161282131151013191737. PMID: 26486146.
  53. Raskurazhev A.A., Tanashyan M.M. [The role of micro-RNA in cerebrovascular disease]. Annals of clinical and experimental neurology 2019; 13(3): 41–46. (In Russ.) doi: 10.25692/ACEN.2019.3.6

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Novikova L.B., Gareev I.F., Raskurazhev A.A., Beylerli O.A., 2020

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».