Структурная фармакология ГАМКА-рецепторов
- Авторы: Россохин А.В.1, Шаронова И.Н.1
-
Учреждения:
- ФГБНУ «Научный центр неврологии»
- Выпуск: Том 15, № 4 (2021)
- Страницы: 44-53
- Раздел: Оригинальные статьи
- URL: https://bakhtiniada.ru/2075-5473/article/view/124088
- DOI: https://doi.org/10.54101/ACEN.2021.4.5
- ID: 124088
Цитировать
Полный текст
Аннотация
Гамма-аминомасляная кислота (ГАМК), основной тормозный нейромедиатор в центральной нервной системе (ЦНС) млекопитающих, активирует ионотропные рецепторы А типа (ГАМКАР), обеспечивающие процессы быстрого торможения. ГАМКАР являются основной мишенью для различных групп препаратов, широко используемых при лечении заболеваний ЦНС.
В обзоре представлены данные, позволяющие показать, как связаны физиологические эффекты, вызываемые активацией и модуляцией функций ГАМКАР различными веществами (в том числе относящимися к лекарственным соединениям), со структурой рецептора и с взаимодействием этих веществ с конкретными модуляторными сайтами. Недавний прогресс в криоэлектронной микроскопии привёл к фундаментальным достижениям в понимании детальной организации и механизмов функционирования ГАМКАР. Обзор основан как на современных структурных данных, полученных с помощью криоэлектронной микроскопии, так и на результатах исследований, выполненных при помощи биохимических и электрофизиологических методов, а также методов молекулярного моделирования.
Полный текст
Открыть статью на сайте журналаОб авторах
Алексей Владимирович Россохин
ФГБНУ «Научный центр неврологии»
Автор, ответственный за переписку.
Email: alrossokhin@yahoo.com
ORCID iD: 0000-0001-7024-7461
к.ф-м.н., в.н.с. лаб. функциональной синаптологии
Россия, МоскваИрина Николаевна Шаронова
ФГБНУ «Научный центр неврологии»
Email: alrossokhin@yahoo.com
ORCID iD: 0000-0001-9955-1870
д.б.н., в.н.с. лаб. функциональной синаптологии
Россия, МоскваСписок литературы
- Sieghart W. Allosteric modulation of GABAA receptors via multiple drug-binding sites. Adv Pharmacol 2015;72:53–96. doi: 10.1016/bs.apha.2014.10.002. PMID: 25600367.
- Olsen R.W. GABAA receptor: positive and negative allosteric modulators. Neuropharmacology 2018;136(Pt A):10–22. doi: 10.1016/j.neuropharm.2018.01.036. PMID: 29407219.
- Hille B. Ionic channels of excitable membrane. 3rd ed. Massachusetts, 2001.
- Nemecz A., Prevost M.S., Menny A. et al. Emerging molecular mechanisms of signal transduction in pentameric ligand-gated ion channels. Neuron. 2016;90(3):452–470. doi: 10.1016/j.neuron.2016.03.032. PMID: 27151638.
- Sieghart W. Structure, pharmacology, and function of GABAA receptor subtypes. Adv Pharmacol. 2006;54:231–263. doi: 10.1016/s1054-3589(06)54010-4. PMID: 17175817.
- Hevers W., Luddens H. The diversity of GABAA receptors. Pharmacological and electrophysiological properties of GABAA channel subtypes. Mol Neurobiol. 1998;18(1):35–86. doi: 10.1007/BF02741459. PMID: 9824848.
- Mortensen M., Patel B., Smart T.G. GABA Potency at GABAA receptors found in synaptic and extrasynaptic zones. Front Cell Neurosci. 2011;6:1. doi: 10.3389/fncel.2012.00001. PMID: 22319471.
- Keramidas A., Moorhouse A.J., Schofield P.R. et al. Ligand-gated ion channels: mechanisms underlying ion selectivity. Prog Biophys Mol Biol. 2004;86(2):161–204. doi: 10.1016/j.pbiomolbio.2003.09.002. PMID: 15288758.
- Laverty D., Desai R., Uchanski T. et al. Cryo-EM structure of the human α1β3γ2 GABAA receptor in a lipid bilayer. Nature. 2019;565(7740):516–520. doi: 10.1038/s41586-018-0833-4. PMID: 30602789.
- Kim J.J., Gharpure A., Teng J. et al. Shared structural mechanisms of general anaesthetics and benzodiazepines. Nature. 2020. 585(7824):303–308. doi: 10.1038/s41586-020-2654-5. PMID: 32879488.
- Sternbach L.H. The benzodiazepine story. J Med Chem. 1979;22(1):1–7. doi: 10.1021/jm00187a001. PMID: 34039.
- Sigel E., Mamalaki C., Eric A.B. Isolation of a GABA receptor from bovine brain using a benzodiazepine affinity column. FEBS Lett. 1982;147(1):45–48. doi: 10.1016/0014-5793(82)81008-9. PMID: 6291997.
- Sigel E., Stephenson F.A., Mamalaki C. et al. A gamma-aminobutyric acid/benzodiazepine receptor complex of bovine cerebral cortex. J Biol Chem. 1983;258(11):6965–6971. PMID: 6304068.
- Sieghart W., Savic M.M. International Union of Basic and Clinical Pharmacology. CVI: GABAA receptor subtype- and function-selective ligands: key issues in translation to humans. Pharmacol Rev. 2018;70(4):836–878. doi: 10.1124/pr.117.014449. PMID: 30275042.
- Sigel E., Ernst M. The benzodiazepine binding sites of GABAA receptors. Trends Pharmacol Sci. 2018;39(7):659–671. doi: 10.1016/j.tips.2018.03.006. PMID: 29716746.
- Castellano D., Shepard R.D., Lu W. Looking for novelty in an “old” receptor: recent advances toward our understanding of GABAARs and their implications in receptor pharmacology. Front Neurosci. 2020;14:616298. doi: 10.3389/fnins.2020.616298. PMID: 33519367.
- Tan K.R., Rudolph U., Luscher C. Hooked on benzodiazepines: GABAA receptor subtypes and addiction. Trends Neurosci. 2011;34(4):188–197. doi: 10.1016/j.tins.2011.01.004. PMID: 21353710.
- Jacob T.C. Neurobiology and therapeutic potential of alpha5-GABA Type A receptors. Front Mol Neurosci. 2019;12:179. doi: 10.3389/fnmol.2019.00179. PMID: 31396049.
- Masiulis S., Desai R., Uchanski T. et al. GABAA receptor signalling mechanisms revealed by structural pharmacology. Nature. 2019;565(7740):454–459. doi: 10.1038/s41586-018-0832-5. PMID: 30602790.
- Wieland H.A., Luddens H., Seeburg P. A single histidine in GABAA receptors is essential for benzodiazepine agonist binding. J Biol Chem. 1992;267(3):1426–1429. PMID: 1346133.
- Baur R., Sigel E. Benzodiazepines affect channel opening of GABAA receptors induced by either agonist binding site. Mol Pharmacol. 2005;67(4):1005–1008. doi: 10.1124/mol.104.008151. PMID: 15657366.
- Campo-Soria C., Chang Y., Weiss D.S. Mechanism of action of benzodiazepines on GABAA receptors. Br J Pharmacol. 2006;148(7):984–990. doi: 10.1038/sj.bjp.0706796. PMID: 16783415.
- Kim J.J., Hibbs R.E. Direct structural insights into GABAA receptor pharmacology. Trends Biochem Sci. 2021;46(6):502–517. doi: 10.1016/j.tibs.2021.01.011. PMID: 33674151.
- Safavynia S.A., Keating G., Speigel I. et al. Effects of gamma-aminobutyric acid type A receptor modulation by flumazenil on emergence from general anesthesia. Anesthesiology. 2016;125(1):147–158. doi: 10.1097/ALN.0000000000001134. PMID: 27111534.
- Sanger D.J. The pharmacology and mechanisms of action of new generation, non-benzodiazepine hypnotic agents. CNS Drugs. 2004;18(Suppl 1):9–15; discussion 41, 43–15. doi: 10.2165/00023210-200418001-00004. PMID: 15291009.
- Hanson S.M., Morlock E.V., Satyshur K.A. et al. Structural requirements for eszopiclone and zolpidem binding to the gamma-aminobutyric acid type-A (GABAA) receptor are different. J Med Chem. 2008;51(22):7243–7252. doi: 10.1021/jm800889m. PMID: 18973287.
- Li Z., Scheraga H.A. Monte Carlo-minimization approach to the multiple-minima problem in protein folding. Proc Natl Acad Sci USA. 1987;84(19):6611–6615. doi: 10.1073/pnas.84.19.6611. PMID: 3477791.
- Zhorov B.S. Vector method for calculating derivatives of energy of atom-atom interactions of complex molecules according to generalized coordinates. J Struct Chem. 1981; 22:4–8.
- Rossokhin A., Teodorescu G., Grissmer S. et al. Interaction of d-tubocurarine with potassium channels: molecular modeling and ligand binding. Mol Pharmacol. 2006;69(4):1356–1365. doi: 10.1124/mol.105.017970. PMID: 16391240.
- Garden D.P., Zhorov B.S. Docking flexible ligands in proteins with a solvent exposure- and distance-dependent dielectric function. J Comput Aided Mol Des. 2010;24(2):91–105. doi: 10.1007/s10822-009-9317-9. PMID: 20119653.
- Rossokhin A., Dreker T., Grissmer S. et al. Why does the inner-helix mutation A413C double the stoichiometry of Kv1.3 channel block by emopamil but not by verapamil? Mol Pharmacol. 2011;79(4):681–691. doi: 10.1124/mol.110.068031. PMID: 21220411.
- Rossokhin A. V., Sharonova I. N., Dvorzhak A. et al. The mechanisms of potentiation and inhibition of GABAA receptors by non-steroidal anti-inflammatory drugs, mefenamic and niflumic acids. Neuropharmacology. 2019;160:107795. doi: 10.1016/j.neuropharm.2019.107795. PMID: 31560908.
- Rossokhin A. The general anesthetic etomidate and fenamate mefenamic acid oppositely affect GABAAR and GlyR: a structural explanation. Eur Biophys J. 2020:49(7):591-607. doi: 10.1007/s00249-020-01464-7. PMID: 32940715.
- Tikhonova T. A., Rassokhina I. V., Kondrakhin E. A. et al. Development of 1,3-thiazole analogues of imidazopyridines as potent positive allosteric modulators of GABAA receptors. Bioorg Chem. 2020;94:103334. doi: 10.1016/j.bioorg.2019.103334. PMID: 31711764.
- Buhr A., Sigel E. A point mutation in the gamma2 subunit of gamma-aminobutyric acid type A receptors results in altered benzodiazepine binding site specificity. Proc Natl Acad Sci USA. 1997;94(16):8824–8829. doi: 10.1073/pnas.94.16.8824. PMID: 9238062.
- Sancar F., Ericksen S.S., Kucken A.M. et al. Structural determinants for high-affinity zolpidem binding to GABA-A receptors. Mol Pharmacol. 2007;71(1):38–46. doi: 10.1124/mol.106.029595. PMID: 17012619.
- Franks N.P. Molecular targets underlying general anaesthesia. Br J Pharmacol. 2006; 147(Suppl 1):S72–S81. doi: 10.1038/sj.bjp.0706441. PMID: 16402123.
- Löscher W., Rogawski M.A. How theories evolved concerning the mechanism of action of barbiturates. Epilepsia. 2012;53(Suppl 8):12–25. doi: 10.1111/epi.12025. PMID: 23205959.
- Forman S. A. Clinical and molecular pharmacology of etomidate. Anesthesiology. 2011;114(3):695–707. doi: 10.1097/ALN.0b013e3181ff72b5. PMID: 21263301.
- Peters J.A., Kirkness E.F., Callachan H. et al. Modulation of the GABAA receptor by depressant barbiturates and pregnane steroids. Br J Pharmacol. 1988;94(4):1257–1269. doi: 10.1111/j.1476-5381.1988.tb11646.x. PMID: 2850060.
- Hales T.G., Lambert J.J. The actions of propofol on inhibitory amino acid receptors of bovine adrenomedullary chromaffin cells and rodent central neurones. Br J Pharmacol. 1991;104(3):619–628. doi: 10.1111/j.1476-5381.1991.tb12479.x. PMID: 1665745.
- Yang J., Uchida I. Mechanisms of etomidate potentiation of GABAA receptor-gated currents in cultured postnatal hippocampal neurons. Neuroscience. 1996;73(1):69–78. doi: 10.1016/0306-4522(96)00018-8. PMID: 8783230.
- Krasowski M.D. Contradicting a unitary theory of general anesthetic action: a history of three compounds from 1901 to 2001. Bull. Anesth. Hist. 2003;21(3):1–24. PMID: 17494361. doi: 10.1016/s1522-8649(03)50031-2.
- Zhang Z.X., Lü H., Dong X.P. et al. Kinetics of etomidate actions on GABAA receptors in the rat spinal dorsal horn neurons. Brain Res. 2002;953(1–2):93–100. doi: 10.1016/s0006-8993(02)03274-2. PMID: 12384242.
- Ruesch D., Neumann E., Wulf H. et al. An allosteric coagonist model for propofol effects on alpha1beta2gamma2L gamma-aminobutyric acid type A receptors. Anesthesiology. 2012;116(1):47–55. doi: 10.1097/ALN.0b013e31823d0c36. PMID: 22104494.
- Li G.D., Chiara D.C., Sawyer G.W. et al. Identification of a GABAA receptor anesthetic binding site at subunit interfaces by photolabeling with an etomidate analog. J Neurosci. 2006;26(45):11599–11605. doi: 10.1523/JNEUROSCI.3467-06.2006. PMID: 17093081.
- Chiara D.C., Dostalova Z., Jayakar S.S. et al. Mapping general anesthetic binding site(s) in human α1β3 γ-aminobutyric acid type A receptors with [3H]TDBzl-etomidate, a photoreactive etomidate analogue. Biochemistry. 2012;51(4):836–847. doi: 10.1021/bi201772m. PMID: 22243422.
- Forman S.A., Miller K.W. Mapping general anesthetic sites in heteromeric γ-aminobutyric acid type A receptors reveals a potential for targeting receptor subtypes. Anesth Analg. 2016;123(5):1263–1273. doi: 10.1213/ANE.0000000000001368. PMID: 27167687.
- Jayakar S.S., Zhou X., Chiara D.C. et al. Identifying drugs that bind selectively to intersubunit general anesthetic sites in the α1β3γ2 GABAAR transmembrane domain. Mol Pharmacol. 2019;95(6):615–628. doi: 10.1124/mol.118.114975. PMID: 30952799.
- Bali M., Akabas M.H. Defining the propofol binding site location on the GABAA receptor. Mol Pharmacol. 2004;65(1):68–76. doi: 10.1124/mol.65.1.68. PMID: 1472223.
- Stewart D.S., Hotta M., Li G.D. et al. Cysteine substitutions define etomidate binding and gating linkages in the alpha-M1 domain of gamma-aminobutyric acid type A (GABAA) receptors. J Biol Chem. 2013;288(42):30373–30386. doi: 10.1074/jbc.M113.494583. PMID: 24009076.
- Belelli D., Lambert J.J., Peters J.A. et al. The interaction of the general anesthetic etomidate with the gamma-aminobutyric acid type A receptor is influenced by a single amino acid. Proc Natl Acad Sci USA. 1997;94(20):11031–11036. doi: 10.1073/pnas.94.20.11031. PMID: 9380754.
- Krasowskia M.D., Nishikawac K., Nikolaevaa N. et al. Methionine 286 in transmembrane domain 3 of the GABAA receptor β subunit controls a binding cavity for propofol and other alkylphenol general anesthetics. Neuropharmacology. 2001;41(8):952–964. doi: 10.1016/s0028-3908(01)00141-1. PMID: 11747900.
- Siegwart R., Krahenbuhl K., Lambert S. et al. Mutational analysis of molecular requirements for the actions of general anaesthetics at the gamma-aminobutyric acidA receptor subtype, alpha1beta2gamma2. BMC Pharmacol. 2003;3:13. doi: 10.1186/1471-2210-3-13. PMID: 14613517.
- Stewart D., Desai R., Cheng Q. et al. Tryptophan mutations at azi-etomidate photo-incorporation sites on alpha1 or beta2 subunits enhance GABAA receptor gating and reduce etomidate modulation. Mol Pharmacol. 2008;74(6):1687–1695. doi: 10.1124/mol.108.050500. PMID: 18805938.
- Miller C. Genetic manipulation of ion channels: a new approach to structure and mechanism. Neuron. 1989;2(3):1195–1205. doi: 10.1016/0896-6273(89)90304-8. PMID: 2483110.
- Siegwart R., Jurd R., Rudolph U. Molecular determinants for the action of general anesthetics at recombinant alpha2beta3gamma2 gamma-aminobutyric acid A receptors. J Neurochem. 2002;80(1):140–148. doi: 10.1046/j.0022-3042.2001.00682.x. PMID: 11796752.
- Eaton M.M., Germann A.L., Arora R. et al. Multiple non-equivalent interfaces mediate direct activation of GABAA receptors by propofol. Curr Neuropharmacol. 2016;14(7):772–780. doi: 10.2174/1570159x14666160202121319. PMID: 26830963.
- Reynolds D.S., Rosahl T.W., Cirone J. et al. Sedation and anesthesia mediated by distinct GABAA receptor isoforms. J Neurosci. 2003;23(24):8608–8617. doi: 10.1523/JNEUROSCI.23-24-08608.2003. PMID: 13679430.
- Jurd R., Arras M., Lambert S. et al. General anesthetic actions in vivo strongly attenuated by a point mutation in the GABAA receptor beta3 subunit. FASEB J. 2003;17(2):250–252. doi: 10.1096/fj.02-0611fje. PMID: 12475885.
- Orser B.A., Wang L.Y., Pennefather P.S. et al. Propofol modulates activation and desensitization of GABAA receptors in cultured murine hippocampal neurons. J Neurosci. 1994;14(12):7747–7760. doi: 10.1523/JNEUROSCI. 14-12-07747.1994. PMID: 7996209.
- Mathers D.A., Wan X., Puil E. Barbiturate activation and modulation of GABAA receptors in neocortex. Neuropharmacology. 2007;52(4):1160–1168. doi: 10.1016/j.neuropharm.2006.12.004. PMID: 17289092.
- Parker I., Gundersen C.B., Miledi R. Actions of pentobarbital on rat brain receptors expressed in Xenopus oocytes. J Neurosci. 1986;6(8):2290–2297. doi: 10.1523/JNEUROSCI.06-08-02290.1986. PMID: 2875136.
- Kitamura A., Sato R., Marszalec W. et al. Halothane and propofol modulation of gamma-aminobutyric acidA receptor single-channel currents. Anesth Analg. 2004;99(2):409–415. doi: 10.1213/01.ANE.0000131969.46439.71. PMID: 15271715.
- Walters R.J., Hadley S.H., Morris K.D. et al. Benzodiazepines act on GABAA receptors via two distinct and separable mechanisms. Nat Neurosci. 2000;3(12):1274–1281. doi: 10.1038/81800. PMID: 11100148.
- Baulieu E.E. Neurosteroids: of the nervous system, by the nervous system, for the nervous system. Recent Prog Horm Res. 1997;52:1–32. PMID: 9238846.
- Belelli D., Lambert J.J. Neurosteroids: endogenous regulators of the GABAA receptor. Nat Rev Neurosci. 2005;6(7):565–575. doi: 10.1038/nrn1703. PMID: 15959466.
- Belelli D., Hogenkamp D., Gee K.W. et al. Realising the therapeutic potential of neuroactive steroid modulators of the GABAA receptor. Neurobiol Stress. 2020;12:100207. doi: 10.1016/j.ynstr.2019.100207. PMID: 32435660.
- Reddy D.S., Estes W.A. Clinical potential of neurosteroids for CNS disorders. Trends Pharmacol Sci. 2016;37(7):543–561. doi: 10.1016/j.tips.2016.04.003. PMID: 27156439.
- Reddy D.S. Pharmacology of endogenous neuroactive steroids. Crit Rev Neurobiol. 2003;15(3–4):197–234. doi: 10.1615/critrevneurobiol.v15.i34.20. PMID: 15248811.
- Zorumski C.F., Paul S.M., Covey D.F. et al. Neurosteroids as novel antidepressants and anxiolytics: GABAA receptors and beyond. Neurobiol Stress. 2019;11:100196. doi: 10.1016/j.ynstr.2019.100196. PMID: 31649968.
- Majewska M.D., Harrison N.L., Schwartz R.D. et al. Steroid hormone metabolites are barbiturate-like modulators of the GABA receptor. Science. 1986;232(4753):1004–1007. doi: 10.1126/science.2422758. PMID: 2422758.
- Turner D.M., Ransom R.W., Yang J.S.J. et al. Steroid anesthetics and naturally-occurring analogs modulate the gamma-aminobutyric acid receptor complex at a site distinct from barbiturates. J Pharmacol Exp Ther. 1989;248(3):960–966. PMID: 2539464.
- Li G.D., Chiara D.C., Cohen J.B. et al. Neurosteroids allosterically modulate binding of the anesthetic etomidate to gamma-aminobutyric acid type A receptors. J Biol Chem. 2009;284(18):11771–11775. doi: 10.1074/jbc.C900016200. PMID: 19282280.
- Chen Z.W., Manion B., Townsend R.R. et al. Neurosteroid analog photolabeling of a site in the third transmembrane domain of the beta3 subunit of the GABAA receptor. Mol Pharmacol. 2012;82(3):408–419. doi: 10.1124/mol.112.078410. PMID: 22648971.
- Laverty D., Thomas P., Field M. et al. Crystal structures of a GABAA-receptor chimera reveal new endogenous neurosteroid-binding sites. Nat Struct Mol Biol. 2017;24(11):977–985. doi: 10.1038/nsmb.3477. PMID: 28967882.
- Miller P.S., Scott S., Masiulis S. et al. Structural basis for GABAA receptor potentiation by neurosteroids. Nat Struct Mol Biol. 2017;24(11):986–992. doi: 10.1038/nsmb.3484. PMID: 28991263.
- Twyman R.E., Macdonald R.L. Neurosteroid regulation of GABAA receptor single-channel kinetic properties of mouse spinal cord neurons in culture. J Physiol. 1992;456:215–245. doi: 10.1113/jphysiol.1992.sp019334. PMID: 1338096.
- Lambert J.J., Belelli D., Peden D.R. et al. Neurosteroid modulation of GABAA receptors. Prog Neurobiol. 2003;71(1):67–80. doi: 10.1016/j.pneurobio.2003.09.001. PMID: 14611869.
- Gielen M., Thomas P., Smart T.G. The desensitization gate of inhibitory Cys-loop receptors. Nat Commun. 2015;6:6829. doi: 10.1038/ncomms7829. PMID: 25891813.
- Rossokhin A.V., Zhorov B.S. Side chain flexibility and the pore dimensions in the GABAA receptor. J Comput Aided Mol Des. 2016;30(7):559–567. doi: 10.1007/s10822-016-9929-9. PMID: 27460059.
- Rossokhin A.V. Homology modeling of the transmembrane domain of the GABAA receptor. Biophysics. 2017;62(5):708–716. doi: 10.1134/s0006350917050190.
Дополнительные файлы
