Seven etiologic factors of insulin resistance syndrome development

Cover Page

Cite item

Full Text

Abstract

Biological role of insulin is metabolic processes regulation of, firstly, fatty acids (FA) and, secondly, of glucose. Insulin is known to regulate phylogenetic transformation of sarcophagous (ichthyophagous) animals of the ocean to herbivorous animals on land. Seven etiologic factors of insulin resistance syndrome: 1) somatic cells do not absorb glucose while they are able to absorb FA; FA absorption is always more active. To force cells to absorb glucose insulin deprives them of FA in non-esterified FA form (NEFA) absorption opportunity; 2) insulin warrants the highest mitochondria productivity in adenosine triphosphate (ATP) production and high animal unit kinetics parameters. Insulin indirectly regulates glucose metabolism; glucose is a substrate for olein monounsaturated FA synthesis. Among long chain FA mitochondria oxidize it most actively, producing ATP; 3) insulin cannot block NEFA release if lipolysis in visceral fatty omentum cells was activated by phylogenetically earlier hormone. Isulin blocks lipolysis only in subcutaneous adipocytes; 4) biochemical activity of palmitic saturated FA (SFA) is low; it is high in olein monounsaturated FA (MFA). In such biological function as locomotion development insulin expresses de novo synthesis of two enzymes: palmytoil-CoA-elongase and stearoyl-CoA-desaturase. These enzymes turn all hepatocyte synthesized palmitate SFA to highly active olein MFA; 5) insulin turns to olein MFA only palmitate SFA which was synthesized from glucose de novo but not from meat food SFA; 6) cells absorb FA in olein triglycerides form by apoE/В-100-endocytosis more actively than palmitate triglycerides by apoВ-100-endocytosis; 7) lack of ATP mitochondria production in trophology biologic function in mitochondria oxidation of palmitate SFA is to be compensated by biologic adaptation function activation, biologic endotrophy reaction, lypolysis in visceral fatty omentum cells and NEFA release. High NEFA serum level is the most common reason for insulin resistance syndrome.

About the authors

V. N Titov

National Medical Research Center of Cardiology of the Ministry of Health of the Russian Federation

Email: n_titov@mail.ru
д-р мед. наук, проф., зав. лаб. клинической биохимии липидного обмена 121552, Russian Federation, Moscow, ul. 3-ia Cherepkovskaia, d. 15a

References

  1. Тейлор Д. Здоровье по Дарвину. Почему мы болеем и как это связано с эволюцией. М.: Альпина Паблишер, 2016
  2. Irawati D, Mamo J, Dhaliwal S.S et al. Plasma triglyceride and high density lipoprotein cholesterol are poor surrogate markers of pro-atherogenic chylomicron remnant homeostasis in subjects with the metabolic syndrome. Lipids Health Dis 2016; 15 (1): 169. https://search.crossref.org/funding?q=501100001797..4
  3. Титов В.Н. Клиническая биохимия. Курс лекций. М.: ИНФРА-М, 2017.
  4. Botham K.M, Wheeler-Jones C.P. Postprandial lipoproteins and the molecular regulation of vascular homeostasis. Prog Lipid Res 2013; 52 (4): 446-64.
  5. Zakiev E.R, Nikiforov N.G, Orekhov A.N. Cell-Based models for development of antiatherosclerotic therapies. Biomed Res Int 2017; 2017: 5198723. https://www.ncbi.nlm.nih.gov/ pubmed/28286766
  6. Уголев А.М. Естественные технологии биологических систем. Л.: Наука, 1987.
  7. Scheithauer T.P, Dallinga-Thie G.M, de Vos W.M et al. Causality of small and large intestinal microbiota in weight regulation and insulin resistance. Mol Metab 2016; 5 (9): 759-70.
  8. Bullon P, Marin-Aguilar F, Roman-Malo L. AMPK/Mitochondria in metabolic diseases. EXS 2016; 107: 129-52.
  9. Goodpaster B.H, Sparks L.M. Metabolic flexibility in health and disease. Cell Metab 2017; 25 (5): 1027-36.
  10. Garg S.G, Martin W.F. Mitochondria, the cell cycle, and the origin of sex via a syncytial eukaryote common ancestor. Genome Biol Evol 2016; 8 (6): 1950-70.
  11. Jin E.S, Beddow S.A, Malloy C.R, Samuel V.T. Hepatic glucose production pathways after three days of a high-fat diet. Metabolism 2013; 62 (1): 152-62.
  12. Buldak L, Dulava-Buldak A, Labuzek K, Okopien B. Effects of 90-day hypolipidemic treatment on insulin resistance, adipokines and proinflammatory cytokines in patients with mixed hyperlipidemia and impaired fasting glucose. Int J Clin Pharmacol Ther 2012; 50 (11): 805-13.
  13. Okuyama H, Langsjoen P.H, Ohara N et al. Medicines and vegetable oils as hidden causes of cardiovascular disease and diabetes. Pharmacology 2016; 98 (3-4): 134-70.
  14. Титов В.Н. Изоферменты стеарил-коэнзим А-десатуразы и действие инсулина в свете филогенетической теории патологии. Олеиновая жирная кислота в реализации биологической функции трофологии и локомоции. Клин. лабораторная диагностика. 2013; 11: 16-26
  15. Лисицын Д.М., Разумовский С.Д., Тишенин М.А., Титов В.Н. Кинетические параметры окисления озоном индивидуальных жирных кислот. Бюллетень экспериментальной биологии и медицины. 2004; 138 (11): 517-9.
  16. Capurso C, Capurso A. From excess adiposity to insulin resistance: the role of free fatty acids. Vascul Pharmacol 2012; 57 (2-4): 91-7.
  17. Jeschke M.G, Boehning D. Endoplasmic reticulum stress and insulin resistance post-trauma: similarities to type 2 diabetes. J Cell Mol Med 2012; 16 (3): 437-44.
  18. Салтыкова М.М. Адаптация к холоду как средство усиления антиоксидантной защиты. Рос. физиологич. журн. 2017; 103 (7): 712-26.
  19. Kraegen E.W, Cooney G.J, Ye J, Thompson A.L. Triglycerides, fatty acids and insulin resistance - hyperinsulinemia. Exp Clin Endocrinol Diabetes 2001; 109 (4): S516-S526.
  20. Valera L.M, Ortega A, Bermudez B et al. A high-fat meal promotes lipid-load and apolipoprotein B-48 receptor transcriptional activity in circulating monocytes. Am J Clin Nutr 2011; 93 (5): 918-25.
  21. Filipou A, Teng K.T, Berry S.E, Sanders T.A. Palmitic acid in the sn-2 position of dietary triacylglycerols does not affect insulin secretion or glucose homeostasis in healthy men and women. Eur J Clin Nutr 2014; 68 (9): 1036-41.
  22. Connor W.E, Lin D.S, Colvis C. Differential mobilization of fatty acids from adipose tissue. J Lipid Res 1996; 37: 290-8.
  23. Longo G, Soto A.M. Why do we need theories? Prog Biophys Mol Biol 2016; 122 (1): 4-10.
  24. Li L.O, Grevengoed T.J, Paul D.S et al. Compartmentalized acyl-CoA metabolism in skeletal muscle regulates systemic glucose homeostasis. Diabetes 2015; 64 (1): 23-35.
  25. Agren J.J, Ravandi A, Kuksis A, Steiner G. Structural and compositional changes in very low density lipoprotein triacylglycerols during basal lipolysis. Eur J Biochem 2002; 269 (24): 6223-32.
  26. Bei F, Jia J, Jia Y.Q. et al. Long-term effect of early postnatal overnutrition on insulin resistance and serum fatty acid profiles in male rats. Lipids Health Dis 2015; 14: 96-109.
  27. Титов В.Н., Малышев П.П., Амелюшкина В.А. и др. Действие статинов: активация липолиза и поглощения инсулинозависимыми клетками липопротеинов очень низкой плотности, повышение биодоступности полиеновых жирных кислот и понижение холестерина липопротеинов низкой плотности. Клин. лабораторная диагностика. 2015; 10: 4-12.
  28. Van Capalleveen J.C, Bernelot Moens S.J, Yang X et al. Apolipoprotein C-III levels and Incident coronary artery disease risk: the EPIC-Norfolk prospective population study. Arterioscler Thromb Vasc Biol 2017; 37 (6): 1206-12.
  29. Drouin-Chartier J.P, Tremblay A.J, Hogue J.C et al. C-reactive protein levels are inversely correlated with the apolipoprotein B-48-containing triglyceride-rich lipoprotein production rate in insulin resistant men. Metabolism 2017; 68: 163-72.
  30. Титов В.Н., Салтыкова М.М. Становление филогенеза функции метаболизма подкожных инсулинзависимых адипоцитов. Этиологический фактор и патогенез ожирения как метаболической пандемии. Клин. лабораторная диагностика. 2017; 62 (1): 4-12.
  31. Jesckhe M.G, Finnerty C.C, Herndon D.N et al. Severe injury is associated with insulin resistance, endoplasmic reticulum stress response, and unfolded protein response. Ann Surg 2012; 255 (2): 370-8.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2018 Consilium Medicum

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».