Взаимосвязь состава микробиоты кишечника и респираторной инфекции COVID-19

Обложка

Цитировать

Полный текст

Аннотация

В статье представлен обзор современной зарубежной и отечественной литературы, обобщающий известные данные о влиянии микробиоты кишечника (МК) на течение COVID-19, а также качественном и количественном изменении состава МК под воздействием новой коронавирусной инфекции. Результаты многих исследований говорят о модулировании микроорганизмами кишечника иммунного ответа при новой коронавирусной инфекции, в том числе посредством стимуляции синтеза цитокинов, иммуноглобулинов, регуляции экспрессии рецепторов-мишеней вируса и поддержания тонуса иммунной системы. С одной стороны, такая закономерность находит отражение в различии тяжести течения заболевания в зависимости от состояния МК. С другой стороны, помимо респираторной симптоматики при инфекции SARS-CoV-2 присутствуют расстройства желудочно-кишечного тракта, что свидетельствует о тропности вируса к клеткам кишечника и влиянии на МК. Описанная двусторонняя связь получила название «ось ”кишечник – легкие”» и открывает перспективы для стимуляции иммунного ответа против SARS-CoV-2 и улучшения прогноза.

Об авторах

Елизавета Анатольевна Капустина

ФГБОУ ВО «Первый Санкт-Петербургский государственный медицинский университет им. акад. И.П. Павлова» Минздрава России

Email: danila-sokolov-danila@mail.ru
ORCID iD: 0009-0003-5098-2380

студентка VI курса педиатрического фак-та

Россия, Санкт-Петербург

Данила Викторович Соколов

ФГБОУ ВО «Первый Санкт-Петербургский государственный медицинский университет им. акад. И.П. Павлова» Минздрава России

Автор, ответственный за переписку.
Email: danila-sokolov-danila@mail.ru
ORCID iD: 0009-0000-7465-6799

студент VI курса лечебного фак-та

Россия, Санкт-Петербург

Даниил Алексеевич Жаренков

ФГБОУ ВО «Первый Санкт-Петербургский государственный медицинский университет им. акад. И.П. Павлова» Минздрава России

Email: danila-sokolov-danila@mail.ru
ORCID iD: 0009-0004-2391-6350

студент VI курса лечебного фак-та

Россия, Санкт-Петербург

Ульяна Алексеевна Шушунина

ФГБОУ ВО «Первый Санкт-Петербургский государственный медицинский университет им. акад. И.П. Павлова» Минздрава России

Email: danila-sokolov-danila@mail.ru
ORCID iD: 0009-0008-3554-0572

студентка VI курса лечебного фак-та

Россия, Санкт-Петербург

Кирилл Павлович Раевский

ФГБОУ ВО «Московский государственный университет им. М.В. Ломоносова»

Email: danila-sokolov-danila@mail.ru
ORCID iD: 0000-0002-9939-3443

аспирант кафедры терапии фак-та фундаментальной медицины

Россия, Москва

Список литературы

  1. Кожевников А.А., Раскина К.В., Мартынова Е.Ю., и др. Кишечная микробиота: современные представления о видовом составе, функциях и методах исследования. Русский медицинский журнал. 2017;(17):1244-7. Режим доступа: https://www.rmj.ru/articles/gastroenterologiya/Kishechnaya_mikrobiota_sovremennye_predstavleniya_o_vidovom_sostave_funkciyah_i_metodah_issledovaniya/# Ссылка активна на 10.11.2024 [Kozhevnikov AA, Raskina KV, Martynova EYu, et al. Intestinal microbiota: modern concepts of the species composition, functions and diagnostic techniques. Russkii Meditsinskii Zhurnal. 2017;(17):1244-7. Available at: https://www.rmj.ru/articles/gastroenterologiya/Kishechnaya_mikrobiota_sovremennye_predstavleniya_o_vidovom_sostave_funkciyah_i_metodah_issledovaniya/# Accessed: 10.11.2024 (in Russian)].
  2. Николаева И.В., Царегородцев А.Д., Шайхиева Г.С. Формирование кишечной микробиоты ребенка и факторы, влияющие на этот процесс. Российский вестник перинатологии и педиатрии. 2018;63(3):13-8 [Nikolaeva IV, Tsaregorodtsev AD, Shaikhieva GS. Formation of the intestinal microbiota of children and the factors that influence this process. Rossiyskiy Vestnik Perinatologii i Pediatrii. 2018;63(3):13-8 (in Russian)]. doi: 10.21508/1027-4065-2018-63-3-13-18
  3. Гаус О.В., Беляков Д.Г. Современные взгляды на роль кишечной микробиоты в формировании патологии кишечника. Русский медицинский журнал. 2021;(4):10-6. Режим доступа: https://www.rusmedreview.com/upload/iblock/5fe/10-16.pdf. Ссылка активна на 10.11.2024 [Gaus OV, Belyakov DG. Modern views on the gut microbiota role in intestinal pathology. Russkii Meditsinskii Zhurnal. 2021;(4):10-6. Available at: https://www.rusmedreview.com/upload/iblock/5fe/10-16.pdf. Accessed: 10.11.2024 (in Russian)].
  4. Honda K, Littman DR. The microbiota in adaptive immune homeostasis and disease. Nature. 2016;535:75-84. doi: 10.1038/nature18848
  5. Таранушенко Т.Е. Единство системы «кишечник — легкие» и роль полезной микробиоты в защите от инфекций. РМЖ. Мать и дитя. 2021;4(4):355-61 [Taranushenko TE. Unity of bowel-lung axis and the role of beneficial microbiota in anti-infectious protection. Russian Journal of Woman and Child Health. 2021;4(4):355-61 (in Russian)]. doi: 10.32364/2618-8430-2021-4-4-355-361
  6. Карпеева Ю.С., Кликунова К.А., Платонова А.Г., Балукова Е.В. Микробиота тонкой кишки у больных с COVID-19. Экспериментальная и клиническая гастроэнтерология. 2022;207(11):80-5 [Karpeeva YS, Klikunova KA, Platonova AG, Balukova EV. Microbiota of the small intestine in patients with COVID-19. Experimental and Clinical Gastroenterology. 2022;207(11):80-5 (in Russian)]. doi: 10.31146/1682-8658-ecg-207-11-80-85
  7. Yongjian W, Cheng G, Lantian T, et al. Prolonged presence of SARS-CoV-2 viral RNA in faecal samples. Lancet Gastroenterol Hepatol. 2020;5(5):434-5. doi: 10.1016/S2468-1253(20)30083-2
  8. Chen Y, Chen L, Deng Q, et al. The presence of SARS-CoV-2 RNA in the feces of COVID-19 patients. J Med Virol. 2020;92(7):833-40. doi: 10.1002/jmv.25825
  9. Jin X, Lian JS, Hu JH, et al. Epidemiological, clinical and virological characteristics of 74 cases of coronavirus-infected disease 2019 (COVID-19) with gastrointestinal symptoms. Gut. 2020;69(6):1002-9. doi: 10.1136/gutjnl-2020-320926
  10. Chhibber-Goel J, Gopinathan S, Sharma A. Interplay between severities of COVID-19 and the gut microbiome: implications of bacterial co-infections? Gut Pathog. 2021;13(1):14. doi: 10.1186/s13099-021-00407-7
  11. Nagano Y, Itoh K, Honda K. The induction of Treg cells by gut-indigenous Clostridium. Curr Opin Immunol. 2012;24(4):392-7. doi: 10.1016/j.coi.2012.05.007
  12. Dumas A, Bernard L, Poquet Y, et al. The role of the lung microbiota and the gut-lung axis in respiratory infectious diseases. Cell Microbiol. 2018;20(12):e12966. doi: 10.1111/cmi.12966
  13. Ichinohe T, Pang IK, Kumamoto Y, et al. Microbiota regulates immune defense against respiratory tract influenza A virus infection. Proc Natl Acad Sci U S A. 2011;108(13):5354-9. doi: 10.1073/pnas.1019378108
  14. Telesford KM, Yan W, Ochoa-Reparaz J, et al. A commensal symbiotic factor derived from Bacteroides fragilis promotes human CD39(+)Foxp3(+) T cells and Treg function. Gut Microbes. 2015;6(4):234-42. doi: 10.1080/19490976.2015.1056973
  15. Mazmanian SK, Liu CH, Tzianabos AO, Kasper DL. An immunomodulatory molecule of symbiotic bacteria directs maturation of the host immune system. Cell. 2005;122(1):107-18. doi: 10.1016/j.cell.2005.05.007
  16. Eribo OA, du Plessis N, Chegou NN. The Intestinal Commensal, Bacteroides fragilis, Modulates Host Responses to Viral Infection and Therapy: Lessons for Exploration during Mycobacterium tuberculosis Infection. Infect Immun. 2022;90(1):e0032121. doi: 10.1128/IAI.00321-21
  17. Zanza C, Romenskaya T, Manetti AC, et al. Cytokine Storm in COVID-19: Immunopathogenesis and Therapy. Medicina (Kaunas). 2022;58(2):144. doi: 10.3390/medicina58020144
  18. Montazersaheb S, Hosseiniyan Khatibi SM, Hejazi MS, et al. COVID-19 infection: an overview on cytokine storm and related interventions. Virol J. 2022;19(1):92. doi: 10.1186/s12985-022-01814-1
  19. Nagata N, Takeuchi T, Masuoka H, et al. Human Gut Microbiota and Its Metabolites Impact Immune Responses in COVID-19 and Its Complications. Gastroenterology. 2023;164(2):272-88. doi: 10.1053/j.gastro.2022.09.024
  20. Yeoh YK, Zuo T, Lui GC, et al. Gut microbiota composition reflects disease severity and dysfunctional immune responses in patients with COVID-19. Gut. 2021;70(4):698-706. doi: 10.1136/gutjnl-2020-323020
  21. Mizutani T, Ishizaka A, Koga M, et al. Correlation Analysis between Gut Microbiota Alterations and the Cytokine Response in Patients with Coronavirus Disease during Hospitalization. Microbiol Spectr. 2022;10(2):e0168921. doi: 10.1128/spectrum.01689-21
  22. Гуменюк Л.Н., Голод М.В., Силаева Н.В., и др. Изменения микробиоты кишечника и их связь с тяжестью заболевания и некоторыми показателями цитокинового профиля у пациентов с COVID-19. Вестник Российского государственного медицинского университета. 2022;(1):23-30 [Gumenyuk LN, Golod MV, Silaeva NV, et al. Gut microbiota alterations and their relationship to the disease severity and some cytokine profile indicators in patients with COVID-19. Bulletin of Russian State Medical University. 2022;(1):23-30 (in Russian)]. doi: 10.24075/vrgmu.2022.006
  23. Sun Z, Song ZG, Liu C, et al. Gut microbiome alterations and gut barrier dysfunction are associated with host immune homeostasis in COVID-19 patients. BMC Med. 2022;20(1):24. doi: 10.1186/s12916-021-02212-0
  24. Wang J, Zhu N, Su X, et al. Gut-Microbiota-Derived Metabolites Maintain Gut and Systemic Immune Homeostasis. Cells. 2023;12(5):793. doi: 10.3390/cells12050793
  25. Топол И.А., Полякова И.С., Елыкова А.В. Роль кишечной микробиоты в регуляции иммунных реакций в иммунной системе кишечника в условиях стресса и при модуляции ее состава путем введения антибиотиков и пробиотиков. Журнал микробиологии, эпидемиологии и иммунобиологии. 2022;99(6):722-33 [Topol IA, Polyakova IS, Elykova AV. Role of intestinal microbiota in regulation of immune reactions of gut-associated lymphoid tissue under stress and following the modulation of its composition by antibiotics and probiotics administration. Journal of Microbiology, Epidemiology and Immunobiology. 2022;99(6):722-33 (in Russian)]. doi: 10.36233/0372-9311-270
  26. Тлюстангелова Р.К., Долинный С.В., Пшеничная Н.Ю. Роль короткоцепочечных жирных кислот в патогенезе острых кишечных инфекций и постинфекционных синдромов. Русский медицинский журнал. 2019;10:31-5. Режим доступа: https://www.rmj.ru/articles/infektsionnye_bolezni/Roly_korotkocepochechnyh_ghirnyh_kislot_v_patogeneze_ostryh_kishechnyh_infekciy_i_postinfekcionnyh_sindromov/?utm_source=yandex.ru&utm_medium=organic&utm_campaign=yandex.ru&utm_referrer=yandex.ru#. Ссылка активна на 09.11.2024 [Tlyustangelova RK, Dolinnyy SV, Pshenichnaya NY. The role of short-chain fatty acids in the pathogenesis of acute intestinal infections and post-infectious syndromes. Russkii meditsinskii zhurnal. 2019;10:31–5. Available at: https://www.rmj.ru/articles/infektsionnye_bolezni/Roly_korotkocepochechnyh_ghirnyh_kislot_v_patogeneze_ostryh_kishechnyh_infekciy_i_postinfekcionnyh_sindromov/?utm_source=yandex.ru&utm_medium=organic&utm_campaign=yandex.ru&utm_referrer=yandex.ru#. Accessed: 09.11.2024 (in Russian)].
  27. Каннер Е.В., Заплатников А.Л., Каннер И.Д., Фарбер И.М. Пробиотики и противоинфекционная резистентность: современные представления и новые терапевтические возможности. РМЖ. Мать и дитя. 2023;6(2):184-91 [Kanner EV, Zaplatnikov AL, Kanner ID, Farber IM. Probiotics and anti-infective resistance: modern concepts and new therapeutic possibilities. Russian Journal of Woman and Child Health. 2023;6(2):184-91 (in Russian)]. doi: 10.32364/2618-8430-2023-6-2-184-191
  28. Zhao Q, Elson CO. Adaptive immune education by gut microbiota antigens. Immunology. 2018;154(1):28-37. doi: 10.1111/imm.12896
  29. Ruane D, Brane L, Reis BS, et al. Lung dendritic cells induce migration of protective T cells to the gastrointestinal tract. J Exp Med. 2013;210(9):1871-88. doi: 10.1084/jem.20122762
  30. Каннер Е.В., Горелов А.В., Печкуров Д.В., и др. Мукозальная иммунная система пищеварительного и респираторного трактов: возможности профилактики и лечения инфекционных заболеваний. Медицинский совет. 2019;(11):100-7 [Kanner EV, Gorelov AV, Pechkurov DV, et al. Mucosal immune system of digestive and respiratory tracts: possibilities of prevention and treatment of infectious diseases. Meditsinsky Sovet. 2019;(11):100-7 (in Russian)]. doi: 10.21518/2079-701X-2019-11-100-107
  31. Бахарев С.Д., Бауло Е.В., Быкова С.В., и др. COVID-19 и тонкая кишка. Терапевтический архив. 2021;93(3):343-7 [Bakharev SD, Baulo EV, Bykova SV, et al. COVID-19 and the small intestine. Terapevticheskii Arkhiv (Ter. Arkh.). 2021;93(3):343-7 (in Russian)]. doi: 10.26442/00403660.2021.03.200662
  32. Zhang Y, Yan R, Zhou Q. ACE2, B0AT1, and SARS-CoV-2 spike protein: Structural and functional implications. Curr Opin Struct Biol. 2022;74:102388. doi: 10.1016/j.sbi.2022.102388
  33. Солдатова О.В., Горянская И.Я., Намазова Л.Э., Абрамова К.И. Взаимодействие SARS-CoV-2 с кишечной микробиотой. Экспериментальная и клиническая гастроэнтерология. 2023;220(12):59-67 [Soldatova OV, Goryanskaya IY, Namazova LE, Abramova KI. Interaction of SARS-CoV-2 with gut microbiota. Experimental and Clinical Gastroenterology. 2023;220(12):59-67 (in Russian)]. doi: 10.31146/1682-8658-ecg-220-12-59-67
  34. Rajput S, Paliwal D, Naithani M, et al. COVID-19 and Gut Microbiota: A Potential Connection. Indian J Clin Biochem. 2021;36(3):266-77. doi: 10.1007/s12291-020-00948-9
  35. de Oliveira GLV, Oliveira CNS, Pinzan CF, et al. Microbiota Modulation of the Gut-Lung Axis in COVID-19. Front Immunol. 2021;12:635471. doi: 10.3389/fimmu.2021.635471
  36. Kariyawasam JC, Jayarajah U, Riza R, et al. Gastrointestinal manifestations in COVID-19. Trans R Soc Trop Med Hyg. 2021;115(12):1362-88. doi: 10.1093/trstmh/trab042
  37. Щикота А.М., Погонченкова И.В., Турова Е.А., и др. Диарея, ассоциированная с COVID-19. Вопросы питания. 2021;90(6):18-30 [Shchikota AM, Pogonchenkova IV, Turova EA, et al. COVID-19-associated diarrhea. Voprosy Pitaniia. 2021;90(6):18-30 (in Russian)]. doi: 10.33029/0042-8833-2021-90-6-18-30
  38. Zuo T, Zhang F, Lui GCY, et al. Alterations in Gut Microbiota of Patients With COVID-19 During Time of Hospitalization. Gastroenterology. 2020;159(3):944-55. doi: 10.1053/j.gastro.2020.05.048
  39. Ong J, Young BE, Ong S. COVID-19 in gastroenterology: a clinical perspective. Gut. 2020;69(6):1144-5. doi: 10.1136/gutjnl-2020-321051
  40. Новикова В.П., Хавкин А.И., Горелов А.В., Полунина А.В. Ось «легкие–кишечник» и COVID-инфекция. Инфекционные болезни. 2021;19(1):91-6 [Novikova VP, Khavkin AI, Gorelov AV, Polunina AV. The lung-gut axis and COVID-19. Infectious Diseases. 2021;19(1):91-6 (in Russian)]. doi: 10.20953/1729-9225-2021-1-91-96
  41. Li S, Zhou Y, Yan D, Wan Y. An Update on the Mutual Impact between SARS-CoV-2 Infection and Gut Microbiota. Viruses. 2022;14(8):1774. doi: 10.3390/v14081774
  42. Евдокимова Н.В., Черненькая Т.В. Влияние SARS-CoV-2 на кишечник и его микробиом: что мы знаем и что хотели бы знать. Журнал им. Н.В. Склифосовского Неотложная медицинская помощь. 2023;12(4):658-66 [Evdokimova NV, Chernenkaya TV. The Effect of SARS-CoV-2 on the Gut and Its Microbiome: What We Know and What We Would Like to Know. Russian Sklifosovsky Journal of Emergency Medical Care. 2023;12(4):658-66 (in Russian)]. doi: 10.23934/2223-9022-2023-12-4-658-666
  43. Zhang F, Wan Y, Zuo T, et al. Prolonged Impairment of Short-Chain Fatty Acid and L-Isoleucine Biosynthesis in Gut Microbiome in Patients With COVID-19. Gastroenterology. 2022;162(2):548-61. doi: 10.1053/j.gastro.2021.10.013
  44. Khan M, Mathew BJ, Gupta P, et al. Gut Dysbiosis and IL-21 Response in Patients with Severe COVID-19. Microorganisms. 2021;9(6):1292. doi: 10.3390/microorganisms9061292
  45. Mazzarelli A, Giancola ML, Fontana A, et al. Gut microbiota composition in COVID-19 hospitalized patients with mild or severe symptoms. Front Microbiol. 2022;13:1049215. doi: 10.3389/fmicb.2022.1049215
  46. Fan R, Liu S, Sun N, et al. Gut microbiota composition is associated with disease severity and host immune responses in COVID-19. Front Cell Infect Microbiol. 2023;13:1274690. doi: 10.3389/fcimb.2023.1274690
  47. Li S, Yang S, Zhou Y, et al. Microbiome Profiling Using Shotgun Metagenomic Sequencing Identified Unique Microorganisms in COVID-19 Patients With Altered Gut Microbiota. Front Microbiol. 2021;12:712081. doi: 10.3389/fmicb.2021.712081
  48. Kim HN, Joo EJ, Lee CW, et al. Reversion of Gut Microbiota during the Recovery Phase in Patients with Asymptomatic or Mild COVID-19: Longitudinal Study. Microorganisms. 2021;9:1237. doi: 10.3390/microorganisms9061237
  49. Zhou Y, Zhang J, Zhang D, et al. Linking the gut microbiota to persistent symptoms in survivors of COVID-19 after discharge. J Microbiol. 2021;59(10):941-8. doi: 10.1007/s12275-021-1206-5
  50. Zhang D, Zhou Y, Ma Y, et al. Gut Microbiota Dysbiosis Correlates With Long COVID-19 at One-Year After Discharge. J Korean Med Sci. 2023;38(15):e120. doi: 10.3346/jkms.2023.38.e120
  51. Hill C, Guarner F, Reid G, et al. Expert consensus document. The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat Rev Gastroenterol Hepatol. 2014;11(8):506-14. doi: 10.1038/nrgastro.2014.66
  52. Wischmeyer PE, Tang H, Ren Y, et al. Efficacy of probiotic treatment as post-exposure prophylaxis for COVID-19: A double-blind, Placebo-Controlled Randomized trial. Clin Nutr. 2024;43(1):259-67. doi: 10.1016/j.clnu.2023.11.043
  53. Leal-Martínez F, Abarca-Bernal L, García-Pérez A, et al. Effect of a Nutritional Support System to Increase Survival and Reduce Mortality in Patients with COVID-19 in Stage III and Comorbidities: A Blinded Randomized Controlled Clinical Trial. Int J Environ Res Public Health. 2022;19(3):1172. doi: 10.3390/ijerph19031172
  54. Ivashkin V, Fomin V, Moiseev S, et al. Efficacy of a Probiotic Consisting of Lacticaseibacillus rhamnosus PDV 1705, Bifidobacterium bifidum PDV 0903, Bifidobacterium longum subsp. infantis PDV 1911, and Bifidobacterium longum subsp. longum PDV 2301 in the Treatment of Hospitalized Patients with COVID-19: a Randomized Controlled Trial. Probiotics Antimicrob Proteins. 2023;15:460-8. doi: 10.1007/s12602-021-09858-5
  55. Gooruee R, Pahlavani N, Hadi V, Hadi S. Evaluation of the effect of kefir supplementation on inflammatory markers and clinical and hematological indices in COVID-19 patients; a randomized double-blined clinical trial. Advances in Integrative Medicine. 2024;11(1):10-6. doi: 10.1186/s13063-019-4008-x

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© ООО "Консилиум Медикум", 2025

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».