Agenesis of the corpus callosum combined with cerebral abnormalities: Clinical and diagnostic features

Cover Page

Cite item

Full Text

Abstract

Background. Agenesis of the corpus callosum (ACC) is the total or partial absence of CC, one of the most common congenital brain malformations, with an incidence rate of 1.4 cases per 10,000 live births.

Aim. To describe the clinical and diagnostic features of 4 patients with ACC.

Materials and methods. Four patients with ACC aged 11, 12, 13, and 50 years were managed, of whom 3 were males, and 1 was a 13-year-old girl. All patients underwent a neurological examination, which assessed cognitive and mental disorders and electroencephalography. Patients underwent magnetic resonance imaging (MRI) in standard modes using a magnetic resonance imaging scanner with a magnetic field intensity of 1.5 T to detect damage to the brain's anatomical structure.

Results. The disease was asymptomatic in 2 patients (a 50-year-old man and a 12-year-old boy). In the other 2 cases, there was an apparent neurological and cognitive deficit. The boy's parents and grandparents died of chronic alcoholism at the age of 11. During a neurological examination, he showed signs of damage to the pyramidal tract, as well as pronounced cognitive impairment with profound mental retardation, including delayed psycho-speech development. The 13-year-old girl suffers from severe mental retardation with speech impairment. In both cases, ACC was associated with epilepsy with a seizure frequency ranging from 6 times a year in the girl and up to 15 times a month in the boy. The gross neurological and cognitive deficits cause social difficulties since such patients need rehabilitation and ongoing care. In all cases, the diagnosis of ACC is based on the results of brain MRI, which is the method of choice. MRI enables assessment of the CC anatomical structure and the presence of other brain abnormalities. Complete agenesis was established in 3 cases, including a girl, and in one patient – a 12-year-old boy – partial agenesis with intact splenium was detected. In all patients, agenesis was combined with brain congenital malformations, namely with the absence of the septum pellucidum, interhemispheric and porencephalic cyst, basilar invagination, and venous malformation of the frontal lobe.

Conclusion. ACC is a rare congenital brain malformation. According to the data, agenesis is more common in males. Complete ACC was diagnosed in 3 patients and partial ACC in 1. Risk factors include maternal alcohol consumption during pregnancy. The clinical presentation is diverse: from an asymptomatic course to severe cognitive impairment with severe and profound mental retardation, epilepsy, and autistic disorders with neurological deficits, including damage to the pyramidal tract. The primary diagnostic method is MRI, which detects anatomical changes in CC and other brain structures.

About the authors

Nikolai A. Ognerubov

Russian Medical Academy of Continuous Professional Education

Author for correspondence.
Email: ognerubov_n.a@mail.ru
ORCID iD: 0000-0003-4045-1247
SPIN-code: 3576-3592

D. Sci. (Med.), D. Sci. (Jur.), Prof.

Russian Federation, Moscow

Tatiana S. Antipova

Federal Network of Nuclear Medicine Centers "PET-Technology"

Email: ognerubov_n.a@mail.ru
ORCID iD: 0000-0003-4165-8397

radiologist

Russian Federation, Moscow

Olga O. Mirsalimova

Federal Network of Nuclear Medicine Centers "PET-Technology"

Email: ognerubov_n.a@mail.ru
ORCID iD: 0009-0007-8600-7586

radiologist

Russian Federation, Moscow

Mikhail A. Zemur

PET-Technology Oncoradiology Center

Email: ognerubov_n.a@mail.ru
ORCID iD: 0009-0003-6492-7008

radiologist

Russian Federation, Podolsk

References

  1. Weise J, Heckmann M, Bahlmann H, et al. Analyses of pathological cranial ultrasound findings in neonates that fall outside recent indication guidelines: results of a population-based birth cohort: survey of neonates in Pommerania (SNiP-study). BMC Pediatr. 2019;19(1):476. doi: 10.1186/s12887-019-1843-6
  2. Милованова О.А., Тараканова Т.Ю., Проничева Ю.Б., и др. Агенезия мозолистого тела, ассоциированная с наследственными синдромами. Анналы клинической и экспериментальной неврологии. 2017;10(2):62-7 [Milovanova OA, Tarakanova TYu, Pronicheva YuB, et al. Agenesis of the corpus callosum associated with hereditary syndromes. Annals of Clinical and Experimental Neurology. 2017;10(2):62-7 (in Russian)].
  3. Schell-Apacik CC, Wagner K, Bihler M, et al. Agenesis and dysgenesis of the corpus callosum: clinical, genetic and neuroimaging findings in a series of 41 patients. Am J Med Genet A. 2008;146A(19):2501-11. doi: 10.1002/ajmg.a.32476
  4. Jeret JS, Serur D, Wisniewski K, Fisch C. Frequency of agenesis of the corpus callosum in the developmentally disabled population as determined by computerized tomography. Pediatr Neurosci. 1985;12(2):101-3. doi: 10.1159/000120229
  5. Grogono JL. Children with agenesis of the corpus callosum. Dev Med Child Neurol. 1968;10(5):613-6. doi: 10.1111/j.1469-8749.1968.tb02944.x
  6. Kumar P, Burton B. Congenital Malformations: Evidence-Based Evaluation and Management. 2007.
  7. De León Reyes NS, Bragg-Gonzalo L, Nieto M. Development and plasticity of the corpus callosum. Development. 2020;147(18):dev189738. doi: 10.1242/dev.189738
  8. Popoola O, Olayinka O, Azizi H, et al. Neuropsychiatric Manifestations of Partial Agenesis of the Corpus Callosum: A Case Report and Literature Review. Case Rep Psychiatry. 2019;2019:5925191. doi: 10.1155/2019/5925191
  9. Nagwa S, Saran S, Sharma Y, Kharbanda A. Imaging features of complete agenesis of corpus callosum in a 3-year-old child. Sudan J Paediatr. 2018;18(2):69-71. doi: 10.24911/SJP.106-1523336915
  10. Gaillard F, Walizai T, Campos A, et al. Dysgenesis of the corpus callosum. Reference article. Radiopaedia.org. doi: 10.53347/rID-864. Accessed: 18.10.2024.
  11. Smith CJ, Smith ZG, Rasool H, et al. Unravelling the Clinical Co-Morbidity and Risk Factors Associated with Agenesis of the Corpus Callosum. J Clin Med. 2023;12:3623. doi: 10.3390/jcm12113623
  12. Kier EL, Truwit CL. The normal and abnormal genu of the corpus callosum: an evolutionary, embryologic, anatomic, and MR analysis. AJNR Am J Neuroradiol. 1996;17(9):1631-41.
  13. Das JM, Geetha R. Corpus Callosum Agenesis. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing. Available at: https://www.ncbi.nlm.nih.gov/books/NBK540986. Accessed: 18.10.2024.
  14. Mahmoud Q. Agenesis of the corpus callosum with interhemispheric cyst. Case study. Radiopaedia.org. doi: 10.53347/rID-171818. Accessed: 18.10.2024.
  15. Barkovich AJ, Simon EM, Walsh CA. Callosal agenesis with cyst: a better understanding and new classification. Neurology. 2001;56(2):220-7. doi: 10.1212/wnl.56.2.220
  16. Ho M, Walizai T, Campos A, et al. Porencephaly. Reference article. Radiopaedia.org. doi: 10.53347/rID-7281. Accessed: 18.10.2024.
  17. Marathu KK, Vahedifard F, Kocak M, et al. Fetal MRI Analysis of Corpus Callosal Abnormalities: Classification, and Associated Anomalies. Diagnostics (Basel). 2024;14(4). doi: 10.3390/diagnostics14040430
  18. Аминофф М.Дж., Гринберг Д.А., Саймон Р.П. Клиническая неврология. М.: МЕДпресс-информ, 2009 [Aminoff MDzh, Grinberg DA, Saimon RP. Klinicheskaia nevrologiia. Moscow: MEDpressinform, 2009 (in Russian)].
  19. Sowell ER, Mattson SN, Thompson PM, et al. Mapping callosal morphology and cognitive correlates: effects of heavy prenatal alcohol exposure. Neurology. 2001;57(2):235-44. doi: 10.1212/wnl.57.2.235
  20. Tang PH, Bartha AI, Norton ME, et al. Agenesis of the corpus callosum: an MR imaging analysis of associated abnormalities in the fetus. AJNR Am J Neuroradiol. 2009;30(2):257-63. doi: 10.3174/ajnr.A1331
  21. Stevenson RE, Hall JG. Human Malformations and Related Anomalies. NY: Oxford University Press, 2006.
  22. Morris JK, Wellesley DG, Barisic I, et al. Epidemiology of congenital cerebral anomalies in Europe: a multicentre, population-based EUROCAT study. Arc Dis Child. 2019;104(12):1181-7. doi: 10.1136/archdischild-2018-316733
  23. Brown WS, Paul LK. The Neuropsychological Syndrome of Agenesis of the Corpus Callosum. J Int Neuropsychol Soc. 2019;25(3):324-30. doi: 10.1017/S135561771800111X
  24. Mitchell TN, Free SL, Williamson KA, et al. Polymicrogyria and absence of pineal gland due to PAX6 mutation. Ann Neurol. 2003;53(5):658-3. doi: 10.1002/ana.10576
  25. Милованова О.А., Тараканова Т.Ю., Проничева Ю.Б., и др. Агенезия мозолистого тела, ассоциированная с наследственными синдромами. Анналы клинической и экспериментальной неврологии. 2017;11(2):62-7 [Milovanova OA, Tarakanova TYu, Pronicheva YuB, et al. Agenesis of the corpus callosum associated with hereditary syndromes. Annals of Clinical and Experimental Neurology. 2017;11(2):62-7 (in Russian)].
  26. Ghavipisheh M, Jahromi LR, Ahrari I, Jahromi MG. Complete agenesis of corpus callosum with a rare neuropsychiatric presentation: A case report. Radiol Case Rep. 2023;18(4):1442-45. doi: 10.1016/j.radcr.2023.01.031
  27. Guadarrama-Ortiz P, Choreño-Parra JA, de la Rosa-Arredondo T. Isolated agenesis of the corpus callosum and normal general intelligence development during postnatal life: a case report and review of the literature. J Med Case Rep. 2020;14(1):28. doi: 10.1186/s13256-020-2359-2
  28. Bhattacharyya R, Sanyal D, Chakraborty S, Bhattacharyya S. A case of corpus callosum agenesis presenting with recurrent brief depression. Indian J Psychol Med. 2009;31(2):92-5. doi: 10.4103/0253-7176.63580
  29. Doherty D, Tu S, Schilmoeller K, Schilmoeller G. Health-related issues in individuals with agenesis of the corpus callosum. Child Care Health Dev. 2006;32(3):333-42. doi: 10.1111/j.1365-2214.2006.00602.x
  30. Des Portes V, Rolland A, Velazquez-Dominguez J, et al. Outcome of isolated agenesis of the corpus callosum: A population-based prospective study. Eur J Paediatr Neurol. 2018;22(1):82-92. doi: 10.1016/j.ejpn.2017.08.003
  31. Hanna RM, Marsh SE, Swistun D, et al. Distinguishing 3 classes of corpus callosal abnormalities in consanguineous families. Neurology. 2011;76(4):373-82. doi: 10.1212/WNL.0b013e318208f492
  32. Neal JB, Filippi CG, Mayeux R. Morphometric variability of neuroimaging features in children with agenesis of the corpus callosum. BMC Neurol. 2015;15:116. doi: 10.1186/s12883-015-0382-5
  33. Severino M, Tortora D, Reid C, et al. Imaging characteristics and neurosurgical outcome in subjects with agenesis of the corpus callosum and interhemispheric cysts. Neuroradiology. 2022;64(11):2163-17. doi: 10.1007/s00234-022-02990-1
  34. Cherian EV, Shenoy KV, Bukelo MJ, Thomas DA. Racing car brings tear drops in the moose. BMJ Case Rep. 2013;2013. doi: 10.1136/bcr-2012-008165
  35. Shwe WH, Schlatterer SD, Williams J, et al. Outcome of Agenesis of the Corpus Callosum Diagnosed by Fetal MRI. Pediatr Neurol. 2022;135:44-51. doi: 10.1016/j.pediatrneurol.2022.07.007
  36. Никогосова А.К., Ростовцева Т.М., Берегов М.М., и др. Магнитно-резонансная трактография: возможности и ограничения метода, современный подход к обработке данных. Медицинская визуализация. 2022;26(3):132-48 [Nikogosova AK, Rostovtseva TM, Beregov MM, et al. Magnetic resonance tractogtaphy: possibilities and limitations, modern approach to data processing. Medical Visualization. 2022;26(3):132-48 (in Russian)]. doi: 10.24835/1607-0763-1064
  37. David AS, Wacharasindhu A, Lishman WA. Severe psychiatric disturbance and abnormalities of the corpus callosum: review and case series. J Neurol Neurosurg Psychiatry. 1993;56(1):85-93. doi: 10.1136/jnnp.56.1.85
  38. Bedeschi MF, Bonaglia MC, Grasso R, et al. Agenesis of the corpus callosum: clinical and genetic study in 63 young patients. Pediatr Neurol. 2006;34(3):186-93. doi: 10.1016/j.pediatrneurol.2005.08.008
  39. Moutard ML, Kieffer V, Feingold J, et al. Isolated corpus callosum agenesis: a ten-year follow-up after prenatal diagnosis (how are the children without corpus callosum at 10 years of age?). Prenat Diagn. 2012;32(3):277-83. doi: 10.1002/pd.3824
  40. Osbun N, Li J, O'Driscoll MC, et al. Genetic and functional analyses identify DISC1 as a novel callosal agenesis candidate gene. Am J Med Genet A. 2011;155A(8):1865-76. doi: 10.1002/ajmg.a.34081
  41. Morton PD, Ishibashi N, Jonas RA. Neurodevelopmental Abnormalities and Congenital Heart Disease: Insights Into Altered Brain Maturation. Circ Res. 2017;120(6):960-77. doi: 10.1161/CIRCRESAHA.116.309048
  42. Pashaj S, Merz E. Detection of Fetal Corpus Callosum Abnormalities by Means of 3D Ultrasound. Ultraschall Med. 2016;37(2):185-94. doi: 10.1055/s-0041-108565
  43. Radswiki T, Campos A, Mahmoud Q, et al. Interhemispheric cyst. Reference article. Radiopaedia.org. doi: 10.53347/rID-15526. Accessed: 18.10.2024.
  44. Winter T, Toscano MM. Proper latin terminology for the cavum septi pellucidi. AJR Am J Roentgenol. 2011;197(6):W1170. doi: 10.2214/AJR.11.7152
  45. Gaillard F, Iqbal S, Sharma R, et al. Platybasia. Reference article. Radiopaedia.org. doi: 10.53347/rID-1892
  46. Новикова Л.Б., Акопян А.П., Гайнанов А.Ф. Краниовертебральные аномалии в амбулаторной практике невролога. Архивная копия от 19.05.2011 на Wayback Machine [Novikova LB, Akopian AP, Gainanov AF. Kraniovertebral'nye anomalii v ambulatornoi praktike nevrologa. Arkhivnaia kopiia ot 19.05.2011 na Wayback Machine (in Russian)].
  47. Falchek SJ, duPont AI. Malformed Cerebral Hemispheres. Reviewed/Revised. Available at: https://www.msdmanuals.com/professional/pediatrics/congenital-neurologic-anomalies/malformed-cerebral-hemispheres. Accessed: 18.10.2024.
  48. Dong X, Bai C, Nao J. Clinical and radiological features of Marchiafava-Bignami disease. Medicine (Baltimore). 2018;97(5):e9626. doi: 10.1097/MD.0000000000009626
  49. Paul LK, Brown WS, Adolphs R, et al. Agenesis of the corpus callosum: genetic, developmental and functional aspects of connectivity. Nat Rev Neurosci. 2007;8(4):287-99. doi: 10.1038/nrn2107
  50. Sztriha L. Spectrum of corpus callosum agenesis. Pediatr Neurol. 2005;32(2):94-101. doi: 10.1016/j.pediatrneurol.2004.09.007
  51. Neupane H, Adhikari S, Dhungana S. Complete agenesis of the corpus callosum in paranoid schizophrenia-a case report. Clin Case Rep. 2021;9(10):e04911. doi: 10.1002/ccr3.4911
  52. Santo S, D'Antonio F, Homfray T, et al. Counseling in fetal medicine: agenesis of the corpus callosum. Ultrasound Obstet Gynecol. 2012;40(5):513-21. doi: 10.1002/uog.12315
  53. Manor C, Rangasami R, Suresh I, Suresh S. Magnetic Resonance Imaging Findings in Fetal Corpus Callosal Developmental Abnormalities: A Pictorial Essay. J Pediatr Neurosci. 2020;15(4):352-5. doi: 10.4103/jpn.JPN_174_19
  54. Palmer EE, Mowat D. Agenesis of the corpus callosum: a clinical approach to diagnosis. Am J Med Genet C Semin Med Genet. 2014;166C(2):184-97. doi: 10.1002/ajmg.c.31405

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Patient F., 11 years old. MRI of the brain: a – T1-weighted sequential image in the sagittal plane: complete absence of CM (blue arrow); abnormal cingulate gyrus (red arrow); porencephalic cyst (green arrow); Bogart angle of 140° (black lines); b – T2-weighted sequential image in the axial plane: interhemispheric meningeal cyst (blue arrows); septum of the interhemispheric meningeal cyst (green arrow); porencephalic cyst (orange arrow); c – T2-weighted sequential image in the axial plane: sizes of the cerebral hemispheres at the level of the third ventricle, on the right – 73 mm, on the left – 67 mm – the largest dimension (yellow arrows), body of the third ventricle (blue arrow); d – T2-weighted sequential image in the coronal plane: interhemispheric meningeal cyst (blue arrow); porencephalic cyst (red arrow); vertically located anterior horns of the lateral ventricles of the brain – the “Viking helmet” sign (yellow arrows); e – T1-weighted sequential image in the coronal plane: interhemispheric meningeal cyst (blue arrow); lateral ventricles of the brain (green arrows); asymmetry of the cerebral hemispheres (yellow arrows).

Download (177KB)
3. Fig. 2. Patient B., 12 years old. MRI of the brain: a – T1-weighted sequential image: in the sagittal plane: absence of ventral sections of the cingulate cortex (red arrow); splenium (CT) and ribbon gyrus (yellow arrow); widening of the roof of the third ventricle (blue arrow); abnormal cingulate gyrus (green arrow); b – T2-weighted sequential image in the coronal plane: “Viking helmet” sign – the cingulate gyrus is inverted in the form of narrowed and elongated frontal horns.

Download (77KB)
4. Fig. 3. Patient B., 12 years old. MRI of the brain: T2-weighted sequential image in the axial plane: the “racing car” sign – widened distance between the lateral ventricles (red arrows); myelinated Probst bundles are located medial to the lateral ventricles (yellow arrows).

Download (52KB)
5. Fig. 4. Patient K., 13 years old. MRI of the brain: a – T1-weighted sequential image in the sagittal plane: complete absence of CM (blue arrow); widening of the roof of the third ventricle (red arrow); abnormal cingulate gyrus (yellow arrow); b – T2-weighted sequential image in the coronal plane. The “Viking helmet” sign – the cingulate gyrus is everted in the form of narrowed and elongated frontal horns (blue arrows); c – T2-weighted sequential image in the axial plane: the “racing car” sign – widened lateral ventricles, the right one – up to 35 mm, the left one – up to 25 mm (yellow arrows).

Download (131KB)
6. Fig. 5. Patient P., 50 years old. MRI of the brain: a – T1-weighted sequential image in the sagittal plane: complete absence of MC (white arrow); widening of the roof of the third ventricle (red arrow); abnormal cingulate gyrus (yellow arrow); inferior sagittal sinus (green arrow); b – T2-weighted sequential image in the coronal plane: the “Viking helmet” sign – the cingulate gyrus is everted in the form of narrowed and elongated frontal horns (yellow arrows); c – T2-weighted sequential image in the axial plane. The lateral ventricles of the brain are widened due to the posterior horns: on the right – 15 mm, on the left – up to 21 mm (blue arrows); the third ventricle is widened to 13 mm – the “racing car” sign (pink arrows); d – T1-weighted sequential image in the coronal plane with contrast. A venous anomaly of the frontal lobe development in the form of a malformation is noted (green arrow).

Download (181KB)

Copyright (c) 2024 Consilium Medicum

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».