Prospects for targeted therapy of Graves' disease: A review

Cover Page

Cite item

Full Text

Abstract

The high prevalence of autoimmune thyroid diseases and the low effectiveness of treatment are the great of the reasons for long-term disability and high disability of patients. Significant progress in the study of immunological mechanisms of the development of autoimmune thyroid pathology has been achieved. These findings evidences provide new directions in the treatment of these diseases. Graves' disease is a classic autoimmune disease characterized by the formation of stimulating antibodies to the thyroid-stimulating hormone receptor and manifested by the thyrotoxicosis clinic. The main methods of treating Graves' disease are the conservative thyrostatic therapy, radioiodotherapy and thyroidectomy during past 70 years. At the same time, each of these methods of treatment has its own contraindications adverse invents and it is required new approaches in the treatment of these diseases. Treatment with the use of modern biological drugs makes it possible to selectively affect the main mechanisms of autoimmune damage in Graves' disease with minimal systemic effect on the body. The review examines the main pathogenetic mechanisms of Graves' disease and endocrine ophthalmopathy, as well as highlights the issues of correction of these disorders using targeted therapy.

About the authors

Oksana V. Maksim

Kirov Military Medical Academy

Email: ovmaks1611@mail.ru

Cand. Sci. (Med.)

Russian Federation, Saint Petersburg

Vladimir V. Salukhov

Kirov Military Medical Academy

Author for correspondence.
Email: vlasaluk@yandex.ru
ORCID iD: 0000-0003-1851-0941
SPIN-code: 4531-6011

D. Sci. (Med.), Prof.

Russian Federation, Saint Petersburg

Boris V. Romashevskiy

Kirov Military Medical Academy

Email: vlasaluk@yandex.ru

Cand. Sci. (Med.)

Russian Federation, Saint Petersburg

References

  1. Петунина Н.А., Трухина Л.В., Мартиросян Н.С. Эндокринная офтальмопатия: современный взгляд. Проблемы эндокринологии. 2012;6:24-32 [Petunina NA, Trukhina LV, Martirosyan NS. Endocrine ophthalmopathy: state-of-the-art approaches. Problems of Endocrinology. 2012;6:24-32 (in Russian)].
  2. Шустов С.Б., Халимов Ю.Ш., Салухов В.В., Труфанов Г.Е. Функциональная и топическая диагностика в эндокринологии: руководство для врачей. 3-е изд., перераб. и доп. М.: ГЭОТАР-Медиа, 2017 [Shustov SB, Khalimov IuSh, Salukhov VV, Trufanov GE. Funktsional’naia i topicheskaia diagnostika v endokrinologii: rukovodstvo dlia vrachei. 3-e izd., pererab. i dop. Moscow: GEOTAR-Media, 2017 (in Russian)].
  3. Lane LC, Cheetham TD, Perros P, Pearce SHS. New Therapeutic Horizons for Graves’ Hyperthyroidism. Endocr Rev. 2020;41(6):873-84. doi: 10.1210/endrev/bnaa022
  4. Burch HB, Perros P, Bednarczuk T, et al. Management of Thyroid Eye Disease: A Consensus Statement by the American Thyroid Association and the European Thyroid Association. Thyroid. 2022;32(12):1439-70. doi: 10.1089/thy.2022.0251
  5. Здор В.В., Маркелова Е.В., Гельцер Б.И. Новые участники нарушения толерантности к антигенам щитовидной железы: к концепции иммунопатогенеза аутоиммунных заболеваний щитовидной железы (обзор литературы). Медицинская иммунология. 2016;18(3):209-20 [Zdor VV, Markelova EV, Geltser BI. New players in altered tolerance to thyroid gland antigens: an immunopathogenesis concept of autoimmune thyroid disease (review). Medical Immunology (Russia). 2016;18(3):209-20 (in Russian)]. doi: 10.15789/1563-0625-2016-3-209-220
  6. Череданова В.Р., Потешкин Ю.Е. Моноклональные антитела в лечении эндокринной офтальмопатии. Вестник офтальмологии. 2021;137(4):116-22 [Cheredanova VR, Poteshkin YE. Monoclonal antibodies in the treatment of thyroid eye disease. Russian Annals of Ophthalmology. 2021;137(4):116-22 (in Russian)]. doi: 10.17116/oftalma2021137041116
  7. Гельцер Б.И., Здор В.В., Котельников В.Н. Эволюция взглядов на патогенез аутоиммунных заболеваний щитовидной железы и перспективы их таргетной терапии. Клиническая медицина. 2017;95(6):524-34 [Gel’tser BI, Zdor VV, Kotel’nikov BN. Evolution of the views on pathogenesis of autoimmune thyroid diseases and prospects for their target therapy. Clinical Medicine. 2017; 95(6):524-34 (in Russian)]. doi: 10.18821/002321492017-956524534
  8. LiVolsi VA, Baloch ZW. The Pathology of Hyperthyroidism. Front Endocrinol (Lausanne). 2018;9:737. doi: 10.3389/fendo.2018.00737
  9. Yaglova NV, Yaglov VV. Ultrastructural characteristics of molecular release of secretory products from thyroid mast cells induced by lipopolysaccharide. Bull Exp Biol Med. 2013;155(2):260-3. doi: 10.1007/s10517-013-2127-z
  10. Lee HJ, Lombardi A, Stefan M, et al. CD40 Signaling in Graves Disease Is Mediated Through Canonical and Noncanonical Thyroidal Nuclear Factor κB Activation. Endocrinology. 2017;158(2):410-8. doi: 10.1210/en.2016-1609
  11. Campi I, Tosi D, Rossi S, et al. B Cell Activating Factor (BAFF) and BAFF Receptor Expression in Autoimmune and Nonautoimmune Thyroid Diseases. Thyroid. 2015;25(9):1043-9. doi: 10.1089/thy.2015.0029
  12. Максим О.В., Ромашевский Б.В., Демьяненко Н.Ю. Особенности патогенеза заболеваний щитовидной железы при COVID-19. Фарматека. 2023;3:34-43 [Maksim OV, Romashevsky BV, Demyanenco NYu. Features of the pathogenesis of thyroid diseases in COVID-19. Pharmateca. 2023;3:34-43 (in Russian)]. doi: 10.18565/pharmateca.2023.3.34-43
  13. Кандрор В.И. Механизмы развития болезни Грейвса и действия тиреоидных гормонов. Клиническая и экспериментальная тиреоидология. 2008;4(1):26-34 [Kandror V. Pathogenesis of Graves Disease and Mechanism of Action of Thiroid Hormones. Clinical and Experimental Thyroidology. 2008;4(1):26-34 (in Russian)]. doi: 10.14341/ket20084126-34
  14. Таскина Е.С., Харинцева С.В., Харинцев В.В., Серкин Д.М. Новые возможности в диагностике эндокринной офтальмопатии (обзор литературы). Клиническая и экспериментальная тиреоидология. 2017;13(3):20-8 [Taskina ES, Charinzeva SV, Charinzev VV, Serkin DM. New opportunities in endocrine ophthalmopathy diagnostics (review). Clinical and Experimental Thyroidology. 2017;13(3):20-8 (in Russian)]. doi: 10.14341/ket2017320-28
  15. Саприна Т.В., Прохоренко Т.С., Рязанцева Н.В., Ворожцова И.Н. Цитокинопосредованные механизмы формирования аутоиммунных тиреопатий. Клиническая и экспериментальная тиреодология. 2010;6(4):22-7 [Saprina TV, Prochorenko TS, Ryasanzeva NV, Vorochzova IN. Cytokine-dependent mechanisms in development of autoimmune thyroid disorders. Clinical and Experimental Thyroidology. 2010;6(4):22-7 (in Russian)].
  16. Свириденко Н.Ю., Бессмертная Е.Г., Беловалова И.М., и др. Аутоантитела, иммуноглобулины и цитокиновый профиль у пациентов с болезнью Грейвса и эндокринной офтальмопатией. Проблемы эндокринологии. 2020;66(5):15-23 [Sviridenko NYu, Bessmertnaya EG, Belovalova IM, et al. Autoantibodies, immunoglobulins and cytokine profile in patients with graves’ disease and Graves’ orbitopathy. Problems of Endocrinology. 2020;66(5):15-23 (in Russian)]. doi: 10.14341/probl12544
  17. Салухов В.В., Ковалевская Е.А. Амиодорон-индуцированный тиреотоксикоз: современный взгляд на проблему. Фарматека. 2023;3:54-63 [Salukhov VV, Kovalevskaya EA. Amiodarone-induced thyrotoxicosis: a modern view of the problem. Pharmateca. 2023;3:54-63 (in Russian)]. doi: 10.18565/pharmateca.2023.3.54-63
  18. Mohyi M, Smith TJ. IGF1 receptor and thyroid-associated ophthalmopathy. J Mol Endocrinol. 2018;61(1):T29-43. doi: 10.1530/JME-17-0276
  19. Wang Y, Smith TJ. Current concepts in the molecular pathogenesis of thyroid-associated ophthalmopathy. Invest Ophthalmol Vis Sci. 2014;55(3):1735-48. doi: 10.1167/iovs.14-14002
  20. Strianese D, Rossi F. Interruption of autoimmunity for thyroid eye disease: B-cell and T-cell strategy. Eye (Lond). 2019;33(2):191-9. doi: 10.1038/s41433-018-0315-9
  21. Krajewska-Węglewicz L, Radomska-Leśniewska DM, Dorobek M, et al. Update on pathogenesis and immunology of Graves’ ophthalmopathy. Cent Eur J Immunol. 2018;43(4):458-65. doi: 10.5114/ceji.2018.81360
  22. Садовская О.П., Дравица Л.В. Современный взгляд на этиологию и патогенез эндокринной офтальмопатии. Проблемы здоровья и экологии. 2019;59(1):9-14 [Sadovskaya OP, Dravitsa LV. Modern View on the Etiology and Pathogenesis of Endocrine Ophthalmopathy. Health and Ecology Issues. 2019;59(1):9-14 (in Russian)].
  23. Fang S, Huang Y, Wang S, et al. IL-17A Exacerbates Fibrosis by Promoting the Proinflammatory and Profibrotic Function of Orbital Fibroblasts in TAO. J Clin Endocrinol Metab. 2016;101(8):2955-65. doi: 10.1210/jc.2016-1882
  24. Pavanello F, Zucca E, Ghielmini M. Rituximab: 13 open questions after 20 years of clinical use. Cancer Treat Rev. 2017;53:38-46. doi: 10.1016/j.ctrv.2016.11.015
  25. Leandro MJ. B-cell subpopulations in humans and their differential susceptibility to depletion with anti-CD20 monoclonal antibodies. Arthritis Res Ther. 2013;15(Suppl. 1):S3. doi: 10.1186/ar3908
  26. Heemstra KA, Toes RE, Sepers J, et al. Rituximab in relapsing Graves’ disease, a phase II study. Eur J Endocrinol. 2008;159(5):609-15. doi: 10.1530/EJE-08-0084
  27. Khanna D, Chong KK, Afifiyan NF, et al. Rituximab treatment of patients with severe, corticosteroid-resistant thyroid-associated ophthalmopathy. Ophthalmology. 2010;117(1):133-9.e2. doi: 10.1016/j.ophtha.2009.05.029
  28. Stan MN, Garrity JA, Carranza Leon BG, et al. Randomized controlled trial of rituximab in patients with Graves’ orbitopathy. J Clin Endocrinol Metab. 2015;100(2):432-41. doi: 10.1210/jc.2014-2572
  29. Du FH, Mills EA, Mao-Draayer Y. Next-generation anti-CD20 monoclonal antibodies in autoimmune disease treatment. Auto Immun Highlights. 2017;8(1):12. doi: 10.1007/s13317-017-0100-y
  30. Ristov J, Espie P, Ulrich P, et al. Characterization of the in vitro and in vivo properties of CFZ533, a blocking and non-depleting anti-CD40 monoclonal antibody. Am J Transplant. 2018;18(12):2895-904. doi: 10.1111/ajt.14872
  31. Kahaly GJ, Stan MN, Frommer L, et al. A Novel Anti-CD40 Monoclonal Antibody, Iscalimab, for Control of Graves Hyperthyroidism-A Proof-of-Concept Trial. J Clin Endocrinol Metab. 2020;105(3). doi: 10.1210/clinem/dgz013
  32. Smith B, Kiessling A, Lledo-Garcia R, et al. Generation and characterization of a high affinity anti-human FcRn antibody, rozanolixizumab, and the effects of different molecular formats on the reduction of plasma IgG concentration. MAbs. 2018;10(7):1111-30. doi: 10.1080/19420862.2018.1505464
  33. Patel DA, Puig-Canto A, Challa DK, et al. Neonatal Fc receptor blockade by Fc engineering ameliorates arthritis in a murine model. J Immunol. 2011;187(2):1015-22. doi: 10.4049/jimmunol.1003780
  34. Zuercher AW, Spirig R, Baz Morelli A, et al. Next-generation Fc receptor-targeting biologics for autoimmune diseases. Autoimmun Rev. 2019;18(10):102366. doi: 10.1016/j.autrev.2019.102366
  35. Ulrichts P, Guglietta A, Dreier T, et al. Neonatal Fc receptor antagonist efgartigimod safely and sustainably reduces IgGs in humans. J Clin Invest. 2018;128(10):4372-86. doi: 10.1172/JCI97911
  36. Howard JF Jr, Bril V, Burns TM, et al. Randomized phase 2 study of FcRn antagonist efgartigimod in generalized myasthenia gravis. Neurology. 2019;92(23):e2661-73. doi: 10.1212/WNL.0000000000007600
  37. Newland AC, Sánchez-González B, Rejtő L, et al. Phase 2 study of efgartigimod, a novel FcRn antagonist, in adult patients with primary immune thrombocytopenia. Am J Hematol. 2020;95(2):178-87. doi: 10.1002/ajh.25680
  38. Robak T, Kaźmierczak M, Jarque I, et al. Phase 2 multiple-dose study of an FcRn inhibitor, rozanolixizumab, in patients with primary immune thrombocytopenia. Blood Adv. 2020;4(17):4136-46. doi: 10.1182/bloodadvances.2020002003
  39. Stohl W, Hiepe F, Latinis KM, et al. Belimumab reduces autoantibodies, normalizes low complement levels, and reduces select B cell populations in patients with systemic lupus erythematosus. Arthritis Rheum. 2012;64(7):2328-37. doi: 10.1002/art.34400
  40. Jayne D, Blockmans D, Luqmani R, et al. Efficacy and Safety of Belimumab and Azathioprine for Maintenance of Remission in Antineutrophil Cytoplasmic Antibody-Associated Vasculitis: A Randomized Controlled Study. Arthritis Rheumatol. 2019;71(6):952-63. doi: 10.1002/art.40802
  41. Neumann S, Nir EA, Eliseeva E, et al. A selective TSH receptor antagonist inhibits stimulation of thyroid function in female mice. Endocrinology. 2014;155(1):310-4. doi: 10.1210/en.2013-1835
  42. Marcinkowski P, Hoyer I, Specker E, et al. A New Highly Thyrotropin Receptor-Selective Small-Molecule Antagonist with Potential for the Treatment of Graves’ Orbitopathy. Thyroid. 2019;29(1):111-23. doi: 10.1089/thy.2018.0349
  43. Furmaniak J, Ryder M, Castro M, et al. Blocking the TSH receptor with the human monoclonal autoantibody K1-70(TM) improves Graves’ ophthalmopathy and aids control of advanced follicular thyroid carcinoma-results of long-term treatment under the first in human single patient expanded use therapy. Eur Thyroid J. 2018;7(Suppl. 1):Abstract P22.
  44. Alhadj Ali M, Liu YF, Arif S, et al. Metabolic and immune effects of immunotherapy with proinsulin peptide in human new-onset type 1 diabetes. Sci Transl Med. 2017;9(402). doi: 10.1126/scitranslmed.aaf7779
  45. Jansson L, Vrolix K, Jahraus A, et al. Immunotherapy With Apitopes Blocks the Immune Response to TSH Receptor in HLA-DR Transgenic Mice. Endocrinology. 2018;159(9):3446-57. doi: 10.1210/en.2018-00306
  46. Pearce SHS, Dayan C, Wraith DC, et al. Antigen-Specific Immunotherapy with Thyrotropin Receptor Peptides in Graves’ Hyperthyroidism: A Phase I Study. Thyroid. 2019;29(7):1003-11. doi: 10.1089/thy.2019.0036
  47. Douglas RS. Teprotumumab, an insulin-like growth factor-1 receptor antagonist antibody, in the treatment of active thyroid eye disease: a focus on proptosis. Eye (Lond). 2019;33(2):183-90. doi: 10.1038/s41433-018-0321-y
  48. Hwang CJ, Eftekhari K. Teprotumumab for Thyroid Eye Disease. Int Ophthalmol Clin. 2020;60(2):47-55. doi: 10.1097/IIO.0000000000000307
  49. Smith TJ, Hoa N. Immunoglobulins from patients with Graves’ disease induce hyaluronan synthesis in their orbital fibroblasts through the self-antigen, insulin-like growth factor-I receptor. J Clin Endocrinol Metab. 2004;89(10):5076-80. doi: 10.1210/jc.2004-0716
  50. Douglas RS, Kahaly GJ, Patel A, et al. Teprotumumab for the Treatment of Active Thyroid Eye Disease. N Engl J Med. 2020;382(4):341-52. doi: 10.1056/NEJMoa1910434
  51. Hamed Azzam S, Kang S, Salvi M, Ezra DG. Tocilizumab for thyroid eye disease. Cochrane Database Syst Rev. 2018;11(11):CD012984. doi: 10.1002/14651858.CD012984.pub2
  52. Ceballos-Macías José J, Rivera-Moscoso R, Flores-Real Jorge A, et al. Tocilizumab in glucocorticoid-resistant graves orbitopathy. A case series report of a mexican population. Ann Endocrinol (Paris). 2020;81(2-3):78-82. doi: 10.1016/j.ando.2020.01.003

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. EOP TT variants (adapted from: [19]).

Download (117KB)
3. Fig. 2. New therapeutic approaches in the treatment of HD and EOP.

Download (265KB)

Copyright (c) 2024 Consilium Medicum

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».