Problems of neuroprotective therapy of acute cerebrovascular accident

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Stroke is the leading cause of disability and the second leading cause of death worldwide. The outcome of this condition is influenced by many factors, in particular the age of the patient and the presence of concomitant diseases. With the development of both pharmacological and mechanical thrombolysis, some progress in the treatment of patients with ischemic stroke has been made. Nevertheless, there is a significant need to develop drugs for neuroprotection in acute ischemic stroke in order to protect the brain from damage before and during the recanalization process, extend the “therapeutic window” for intervention, and further improve the functional outcome of the disease. The article discusses the problems in the development of neuroprotective strategies, the mechanisms underlying these strategies, and issues related to the search for new drugs.

About the authors

Leonid V. Klimov

“Integritas” Clinic

Author for correspondence.
Email: dr.klimov@mail.ru
ORCID iD: 0000-0003-1314-3388

Cand. Sci. (Med.), Neurologist

Russian Federation, Moscow

E. S. Akarachkova

International Society “Stress under control”

Email: dr.klimov@mail.ru
ORCID iD: 0000-0002-7629-3773
Russian Federation, Moscow

D. I. Lebedeva

Institute of Public Health and Digital Medicine, Tyumen State Medical University; Regional Medical and Rehabilitation Center

Email: dr.klimov@mail.ru
ORCID iD: 0000-0003-2478-9619
Russian Federation, Tyumen; Tyumen

References

  1. Katan M., Luft A. Global Burden of Stroke. Semin Neurol. 2018;38(2):208–11. doi: 10.1055/s-0038-1649503.
  2. Feigin V.L., Nguyen G., Cercy K., et al. GBD 2016 Lifetime Risk of Stroke Collaborators. Global, Regional, and Country-Specific Lifetime Risks of Stroke, 1990 and 2016. N Engl J Med. 2018;379(25):2429–37. doi: 10.1056/NEJMoa1804492.
  3. Boehme A.K., Esenwa C., Elkind M.S. Stroke Risk Factors, Genetics, and Prevention. Circ. Res. 2017;120(3):472–95. doi: 10.1161/CIRCRESAHA.116.308398.
  4. Benjamin E.J., Muntner P., Alonso A., et al. Heart Disease and Stroke Statistics-2019 Update: A Report From the American Heart Association. Circulation. 2019;139(10):e56-528. doi: 10.1161/CIR.0000000000000659.
  5. Федин А.И. Клинические аспекты патогенетической терапии ишемии головного мозга. Минимизация негативного прогноза. М., 2016. [Fedin A.I. Clinical aspects of pathogenetic therapy of cerebral ischemia. Minimizing the negative outlook. M., 2016. (In Russ.)].
  6. Amarenco P., Bogousslavsky J., Caplan L.R., et al. Classification of stroke subtypes. Cerebrovasc Dis. 2009;27(5):493–501. doi: 10.1159/000210432.
  7. Sarfo F.S., Ovbiagele B., Gebregziabher M., et al. SIREN. Stroke Among Young West Africans: Evidence From the SIREN (Stroke Investigative Research and Educational Network) Large Multisite Case-Control Study. Stroke. 2018;49(5):1116–22. doi: 10.1161/STROKEAHA.118.020783.
  8. Cummings J.L., Trimble M.R. Concise Guide to Neuropsychiatry and Behavioral Neurology. 2nd ed. Washington, London: American Psychiatric Publishing, Inc., 2002. 275.
  9. Ramos-Cabrer P., Campos F., Sobrino T., Castillo J. Targeting the ischemic penumbra. Stroke. 2011;42(Suppl. 1):S7–11. doi: 10.1161/STROKEAHA.110.596684.
  10. Pulsinelli W. Pathophysiology of acute ischaemic stroke. Lancet. 1992;339(8792):533–36. doi: 10.1016/0140-6736(92)90347-6.
  11. Sun M.S., Jin H., Sun X., et al. Free Radical Damage in Ischemia-Reperfusion Injury: An Obstacle in Acute Ischemic Stroke after Revascularization Therapy. Oxid Med Cell Longev. 2018;2018:3804979. doi: 10.1155/2018/3804979.
  12. Gulke E., Gelderblom M., Magnus T. Danger signals in stroke and their role on microglia activation after ischemia. Ther Adv Neurol Disord. 2018;11:1756286418774254. doi: 10.1177/1756286418774254.
  13. Chamorro A., Meisel A., Planas A.M., et al. The immunology of acute stroke. Nat Rev Neurol. 2012;8(7):401–10. doi: 10.1038/nrneurol.2012.98.
  14. Veltkamp R., Gill D. Clinical Trials of Immunomodulation in Ischemic Stroke. Neurother. 2016;13(4):791–800. doi: 10.1007/s13311-016-0458-y.
  15. Cohen J.E., Itshayek E., Moskovici S., et al. State-of-the-art reperfusion strategies for acute ischemic stroke. J Clin Neurosci. 2011;18(3):319–23. doi: 10.1016/j.jocn.2010.10.008.
  16. Bai J., Lyden P.D. Revisiting cerebral postischemic reperfusion injury: new insights in understanding reperfusion failure, hemorrhage, and edema. Int J Stroke. 2015;10(2):143–52. doi: 10.1111/ijs.12434.
  17. Chamorro A., Dirnagl U., Urra X., Planas A.M. Neuroprotection in acute stroke: targeting excitotoxicity, oxidative and nitrosative stress, and inflammation. Lancet. Neurol. 2016;15(8):869–81. doi: 10.1016/S1474-4422(16)00114-9.
  18. Ginsberg M.D. Neuroprotection for ischemic stroke: past, present and future. Neuropharmacol. 2008;55(3):363–89. doi: 10.1016/j.neuropharm.2007.12.007.
  19. O’Collins V.E., Macleod M.R., Donnan G.A., et al. 1,026 experimental treatments in acute stroke. Ann Neurol. 2006;59(3):467–77. doi: 10.1002/ana.20741.
  20. Braeuninger S., Kleinschnitz C. Rodent models of focal cerebral ischemia: procedural pitfalls and translational problems. Exp Transl Stroke Med. 2009;1:8. doi: 10.1186/2040-7378-1-8.
  21. Chen R.L., Balami J.S., Esiri M.M., et al. Ischemic stroke in the elderly: an overview of evidence. Nat Rev Neurol. 2010;6(5):256–65. doi: 10.1038/nrneurol.2010.36.
  22. Karatepe A.G., Gunaydin R., Kaya T., Turkmen G. Comorbidity in patients after stroke: impact on functional outcome. J Rehabil Med. 2008;40(10):831–35. doi: 10.2340/16501977-0269.
  23. Saver J.L. The 2012 Feinberg Lecture: treatment swift and treatment sure. Stroke. 2013;44(1):270–77. doi: 10.1161/STROKEAHA.112.671354.
  24. Ozpinar A. Weiner G.M., Ducruet A.F. Succinate: A Promising Therapeutic Target for Reperfusion Injury. Neurosurg. 2015;77(6):N13–4. doi: 10.1227/01.neu.0000473807.30361.29.
  25. Chouchani E.T., Pell V.R., Gaude E., et al. Ischaemic accumulation of succinate controls reperfusion injury through mitochondrial ROS. Nature. 2014;515(7527):431–35. doi: 10.1038/nature13909.
  26. Муратов Ф.Х., Шермухамедова Ф.К., Батоцыренов Б.В., Харитонова Т.В. Мультимодальное действие цитофлавина при остром мозговом инсульте, развившемся на фоне метаболического синдрома. Журнал неврологии и психиатрии им. С.С. Корсакова. 2016;116(12):44–7. [Muratov F.Kh., Shermukhamedova F.K., Batotsyrenov B.V., Haritonova T.V. Influence of multimodal effect of cytoflavin in the acute brain stroke in patients with metabolic syndrome. Zhurnal nevrologii i psikhiatrii im. S.S. Korsakova. 2016;116(12):44–7. (In Russ.)]. doi: 10.17116/jnevro201611612144-47.
  27. Дамулин И., Екушева Е. Восстановление после инсульта и процессы нейропластичности. Медицинский совет. 2014;(18):12–9. [Damulin I., Ekusheva E. Post-stroke recovery and neuroplasticity processes. Meditsinskii sovet. 2014;(18):12–9. (In Russ.)]. doi: 10.21518/2079-701X-2014- 18-12-19.
  28. Ковальчук В.В., Хайбуллин Т.Н., Зуева И.Б. и др. Теоретические и практические принципы нейрореабилитации пациентов, перенесших инсульт. Журнал неврологии и психиатрии им. С.С. Корсакова. Спецвыпуски. 2018;118 (92):55–62. [Koval’chuk V.V., Khaybullin T.N., Zueva I.B. et al. Theoretical and practical principles of neurorehabilitation in post-stroke patients Zhurnal nevrologii i psikhiatrii im. S.S. Korsakova. 2018;118(92):55–62. (In Russ.)]. doi: 10.17116/jnevro20181180925514.
  29. Екушева Е.В. Постинсультная реабилитация: процессы нейропластичности и возможности повышения функционального восстановления. Фарматека. 2019;26(3):57–64. [Ekusheva E.V. Poststroke rehabilitation: the processes of neuroplasticity and the possibility of increasing functional recovery. Results of open randomized control comparative study. Farmateka. 2019;26(3):57–64. (In Russ.)]. doi: 10.18565/pharmateca.2019.3.57-64.

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».