Processing of Data for Inductive Inference Based on Non-Strict Probability

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Based on methods of inductive logic, an approach to identifying of implication relationships “If A, then b” in Big Data is considered. This approach is considered in conditions of low reliability and inconsistency of data. To work in this condition, logics with vector semantics in the form of VTF logics are used. The presence or absence of phenomena in tables of their joint occurrence is formalized by truth vectors with components v+ and v-, where v+ is a measure of the true of a statement about the presence of a phenomenon, v- is a measure of its false. On the base of statistical induction principal, the indicator of the validity of a causal relationship is calculated as the average value of the truth vectors of the corresponding non-strict propositions. The resulting value is interpreted as a non-strict probability of the relationship, which acts as a vector indicator of its validity. The applicability of the approach for processing qualitative and quantitative data, as well as data containing artifacts, is shown.

Sobre autores

Leonid Arshinskiy

Irkutsk State Transport University

Autor responsável pela correspondência
Email: larsh@mail.ru

Professor, Doctor of Technical Sciences, Associate Professor

Rússia, Irkutsk

Vadim Lebedev

Irkutsk State Transport University

Email: lebedevvs97@yandex.ru

Graduate student

Rússia, Irkutsk

Bibliografia

  1. Formula Big Data: sem` «V» + neordinarnaya zadacha [Big Data formula: seven “Vs” + an extraordinary task]. Availa- ble at: https://www.fsight.ru/blog/formula-big-data-sem-v- neordinarnaja-zadacha-2/ (accessed January 10, 2024)
  2. Lobanov, A.A. 2014. Bol'shie dannye: problemy obrabotki [Big data: processing problems]. Vestnik MGTU MIREA [Bulletin of MSTU MIREA]. 3:51-58.
  3. Abramova, A.A. 2023. Analiz ispol'zovaniya bol'shih dannyh dlya prinyatiya reshenij v promyshlennoj sfere [Anal- ysis of the use of big data for decision making in the industrial sector]. Ekonomika i kachestvo sistem svyazi [Economics and quality of communication systems]. 3:13-21.
  4. Kel'chevskaya, N.R., and M.S. Kolyasnikov. 2020. Ispol'zovanie bol'shih dannyh v strategicheskom upravlenii znaniyami kompanii, sleduyushchej trendam Industrii 4.0 [The use of big data in the strategic knowledge management of a company following the trends of Industry 4.0]. Liderstvo i menedzhment [Leadership and Management]. 7(3):405-426. doi: 10.18334/lim.7.3.110662.
  5. Fosso Wamba, S. et al. 2015. How ‘big data’ can make big impact: Findings from a systematic review and a longitudi- nal case study. International Journal of Production Econom- ics. 165: 234-246. doi: 10.1016/j.ijpe.2014.12.031.
  6. Oreshkov, V.I. 2011. Intellektual'nyj analiz dannyh kak sovremennyj instrument podderzhki upravlencheskih resh- enij [Data mining as a modern tool for supporting manage- ment decisions]. Vestnik Ryazanskogo gosudarstvennogo agrotekhnologicheskogo universiteta [Bulletin of the Rya- zan State Agrotechnological University]. 4:55-59.
  7. Emel'chenkov, E.P. 2013. Bol'shie dannye. Metody intel- lektual'nogo analiza [Big Data. Methods of intellectual analysis]. Sistemy komp'yuternoj matematiki i ihprilozheniya [Systems of computer mathematics and their applications]. 14:75-79.
  8. Esaulenko, A.S. and N.D. Nikonenko. 2016. Bol'shie dannye. Real'nost' i perspektivy [Big data. Reality and pro- spects]. Upravlenie innovaciyami: teoriya, metodologiya, praktika [Innovation management: theory, methodology, practice]. 17:74-79.
  9. Medvedev, D.A. 2019. Bol'shie dannye: prichiny poyavleniya i kak ih mozhno ispol'zovat' [Big data: reasons for its appearance and how it can be used]. Nauka i obra- zovanie segodnya [Science and Education Today]. 4:14-16.
  10. Kuzora, S.S. and I.P. Natarov. 2022. Cifrovaya transfor- maciya i bol'shie dannye [Digital transformation and big data]. Vestnik Rossijskogo universiteta druzhby narodov. Seriya: Gosudarstvennoe i municipal'noe upravlenie [Bul- letin of the Russian Peoples' Friendship University. Series: State and municipal administration]. 9(2):150–161. doi: 10.22363/2312-8313-2022-9-2-150-161.
  11. Magerramov, Z.T., V.G. Abdullaev and A.Z. Mag- erramova. 2017. Big Data: problemy, metody analiza, algo- ritmy [Big Data: problems, analysis methods, algorithms]. Radioelektronika i informatika [Radioelectronics and Infor- matics]. 3:42-52.
  12. Kriterii kachestva dannyh [Data quality criteria]. Available at: https://loginom.ru/blog/data-quality-criteria (accessed at 10 January, 2024).
  13. Dudarev, V.A. 2014. Podhod k zapolneniyu propuskov v obuchayushchih vyborkah dlya komp'yuternogo kon- struirovaniya neorganicheskih soedinenij [An approach to filling gaps in training samples for computer-aided design of inorganic compounds]. Vestnik MITHT [Bulletin of MITHT]. 9(1):73-75.
  14. Finn, V.K. 2004. Ob intellektual'nom analize dannykh [On intelligent data analysis]. Novosti iskusstvennogo in- tellekta [Artificial Intelligence News]. 3:1-20.
  15. Finn, V. K. 2010. Ob opredelenii empiricheskikh za- konomernostey posredstvom DSM - metoda avtomatich- eskogo porozhdeniya gipotez [On the determination of em- pirical patterns using JSM - the method of automatic generation of hypotheses]. Iskusstvennyy intellekt i prinya- tiye resheniy [Artificial intelligence and decision mak- ing].4:41-48.
  16. Vinogradov, D.V. 2017. Analiz rezul'tatov primeneniya VKF-sistemy: uspekhi i otkrytaya problema [Analysis of the results of using the VKF system: successes and an open problem]. Nauchno-tekhnicheskaya informatsiya. Seriya 2: Informatsionnyye protsessy i sistemy [Scientific and tech- nical information. Series 2: Information processes and sys- tems]. 5:1-4.
  17. Panov, A.I. 2013. Vyyavleniye prichinno-sledstvennykh svyazey v dannykh psikhologicheskogo testirovaniya logicheskimi metodami [Identification of cause-and-effect relationships in psychological testing data using logical methods]. Iskusstvennyy intellekt i prinyatiye resheniy [Ar- tificial intelligence and decision making]. 1:24–32.
  18. Anshakov, O.M. et al. 2009. DSM-metod avtomatich- eskogo porozhdeniya gipotez: Logicheskiye i epistemolog- icheskiye osnovaniya [JSM method for automatically gen- erating hypotheses: Logical and epistemological foundations]. Moscow. Book house “LIBRIKOM”. 432 p.
  19. Dunn, J.M. 1966. Algebra of Intensional Logics. Doctoral Dissertation University of Pittsburg, Ann Arbor.
  20. Dunn, J.M. 1976. Intuitive semantics for first-degree entail- ment and “coupled trees”. Philosophical Studies. 29:149-158.
  21. Belnap, N. 1977. A useful four-valued logic. Modern Uses of Multiple-Valued Logic. Dordrecht: D. Reidel Publish. Co. 8-37.
  22. Belnap N. 1977. How a computer should think. Contemporary Aspects of Philosophy. Stocksfield: Oriel Press Ltd. 30-55.
  23. Arshinskiy, L.V. eds. 1998. Metody obrabotki nestrogih vyskazyvanij [Methods for processing non-strict proposi- tion]. Irkutsk: East-Siberian Institute of MIA of Russia. 40 p.
  24. Ivlev, Yu.V. eds. 2004. Logika: Uchebnik 3-e izd [Logic: Textbook 3rd ed.]. Moscow: TK Welby, Prospekt Publish- ing House. 288 p.
  25. Golenkov, V.V. eds. 2009. Statisticheskie osnovy in- duktivnogo vyvoda: ucheb. posobie [Statistical foundations of inductive inference: textbook]. Minsk: BSUIR. 202 p.
  26. Kyburg, H.E. 1970. Probability and Inductive Logic. L.: Macmillan. 272 p.
  27. Inductive Inference. Available at: https://www.sciencedi- rect.com/topics/mathematics/ inductive-inference (ac- cessed at 10 January, 2024).
  28. Arshinskiy, L.V. and V.S. Lebedev. 2022. Ob"ektivizaciya baz znanij intellektual'nyh sistem na osnove induktivnogo vyvoda s ispol'zovaniem nestrogih veroyatnostej [Objecti- fication of intelligent systems knowledge bases based on the inductive inference using non-strict probabilities]. Informacionnye i matematicheskie tekhnologii v nauke i upravlenii [Information and mathematical technologies in science and management]. 4:190-200. doi: 10.38028/ESI.2022.28.4.015.
  29. Arshinskiy L.V. 2005. Prilozhenie logik s vektornoj seman- tikoj k opisaniyu sluchajnyh sobytij i ocenke riska [Appli- cation of vector semantics logics for description of occasion events and risks evaluation] // Problemy analiza riska [Is- sues of risk analysis]. 2(3):231-248.
  30. Nechetkaya logika v modelyah upravleniya i iskusstven- nogo intellekta / pod red. D.A. Pospelova [Fuzzy logic in control models and artificial intelligence / ed. YES. Pospelov], eds. 1986. M.: Science. Ch. ed. physics and mathematics lit. 312 p.
  31. Gottwald, S. 2000. Treatise on Many-Valued Logics. Leip- zig. 604 p.
  32. Arshinskiy, L.V. 2004. Ocenka istinnosti vzaimoisk- lyuchayushchih gipotez sredstvami vektornoj logiki [As- sessing the truth of mutually exclusive hypotheses using vector logic]. Informacionnye i matematicheskie tekhnologii / Trudy Bajkal'skoj Vserossijskoj konferencii «Informacionnye i matematicheskie tekhnologii» [Infor- mation and mathematical technologies/ Proceedings of the Baikal All-Russian conference “Information and mathe- matical technologies”]. Irkutsk. 188-194.
  33. Pima Indians Diabetes – EDA & Prediction (0.906). URL: https://www.kaggle.com/code/vincentlugat/pima-indians- diabetes-eda-prediction-0-906/input.
  34. Uroven' sahara v krovi: norma, ustanovlennaya VOZ dlya zdorovyh lyudej [Blood sugar level: the norm established by WHO for healthy people]. Available at: https://yan- dex.ru/health/turbo/articles?id=4419 (accessed at 10 Janu- ary, 2024).

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».