Numerical Characteristics of Random Processes with Fuzzy States
- Authors: Khatskevich V.L.1, Makhinova O.A.1
-
Affiliations:
- Air Force Academy named after N.E. Zhukovsky and Yu. A. Gagarin
- Issue: No 1 (2023)
- Pages: 32-41
- Section: Decision Support Systems
- URL: https://bakhtiniada.ru/2071-8594/article/view/269761
- DOI: https://doi.org/10.14357/20718594230104
- ID: 269761
Cite item
Full Text
Abstract
In this paper, we study continuous random processes with fuzzy states. The properties of their numerical characteristics – expectations and correlation functions, – corresponding to the properties of the characteristics of numerical random processes are established. A canonical representation of fuzzy-random processes is introduced and investigated. Triangular fuzzy-random processes are considered as an application.
About the authors
Vladimir L. Khatskevich
Air Force Academy named after N.E. Zhukovsky and Yu. A. Gagarin
Author for correspondence.
Email: vlkhats@mail.ru
Doctor of technical sciences, professor. Professor
Russian Federation, VoronezhOlga A. Makhinova
Air Force Academy named after N.E. Zhukovsky and Yu. A. Gagarin
Email: olga.maxinova@list.ru
Candidate of physical and mathematical sciences, docent. Associate professor
Russian Federation, VoronezhReferences
- Averkin A.N. Nechetkie mnozhestva v modelyah upravleniya i iskusstvennogo intellekta [Fuzzy sets in control and artificial intelligence models]. M.: Nauka [Moscow: Science]. 1986. 312 р.
- Buckley J.J. Eslami E., Feuring T. Fuzzy mathematics in economic and engineering. Heidelberg, New-York: Physica-Verl. 2002. 282 p.
- Piegat A. Nechetkoe modelirovanie i upravlenie [Fuzzy modeling and control]. M.: BINOM [Moscow: BINOM]. 2015. 798 р.
- Liang Cao, Deyin Yao, Hongyi Li, Wei Meng, Renquial Lu. Fuzzy-based dynamic event triggering formation control for nonstrict-feedback nonlinear MASs // Fuzzy sets and systems. V. 452. Cjan. 2023. P. 1-22.
- Bronevich A.G., Lepsky A.E. Nechetkie modeli analiza dannyh i prinyatiya reshenij [Fuzzy models of data analysis and decision making]. M.: Izd. dom Vysshej shkoly ekonomiki [Moscow: Publishing house of the Higher School of Economics], 2022. 264 р.
- Kwakernaak H. Fuzzy random variables // I. Definitions and theorems. Information sciences. 1978. P. 1-29.
- Nahmias S. Fuzzy variables in a random environment. Advanced in Fuzzy Sets Theory // Amsterdam: NHPC, 1979. P. 165-180.
- Puri M. L., Ralesku D.A. Fuzzy random variables. Journal of Mathematical Analysis and Applications, 114. 1986. P. 409-422.
- Feng Y., Hu. L., Shu H. The variance and covariance of fuzzy random variables. Fuzzy Systems. 2001. 120. P. 487-497.
- Shvedov A.S. Otsenivanie srednikh i kovariatsiy nechetko-sluchaynykh velichin [Estimation of averages and covariances of fuzzy random variables] // Prikladnaya ekonometrika [Applied Econometrics]. 2016. Р. 121-138.
- Viertl R. Statistical methods for fuzy data. Chichester, Wiley. 2011. 268 p.
- .S. de la Rosa de Saa, M. Lubiano, B. Sinova, P. Filzmoser, M. A. Gil. Locationfree robust scale estimates for fuzzy data. IEEE Transactions on Fuzzy Systems. 2020. P. (99):1-1.
- Wentzel E.S., Ovcharov L.A. Teoriya sluchajnyh processov i ih inzhenernye prilozheniya [Theory of random processes and their engineering applications]. M.: Knorus [Moscow: Knorus]. 2016. 439 р.
- Gmurman V.E. Teoriya veroyatnostey i matematicheskaya statistika: Uchebnoe posobie dlya vuzov [Probability theory and mathematical statistics: Textbook for universities]. M.: Vysshaya shkola [Moscow: High School]. 2003. 479 р.
- Demenkov N.P., Mikrin E.A., Mochalov I.A. Markovskie protsessy s nechetkimi sostoyaniyami. CHast' 1. Markovskie processy [Markov processes with fuzzy states. Part 1. Markov processes] // Informacionnye tekhnologii [Information technology]. 2020. V. 26. №6. Р. 323-334.
- Demenkov N.P., Mikrin E.A., Mochalov I.A. Markovskie protsessy s nechetkimi sostoyaniyami. CHast' 2. Markovskie processy [Markov processes with fuzzy states. Part 2. Markov processes] // Informacionnye tekhnologii [Information technology]. 2020. V. 26. №7. Р. 387-393.
- Yushun Tan, Ye Yuan, Xiangpeng Xie, Ben Niu. Dynamic event-triggered security control for networked T-S fuzzy system with non-uniform sampling // Fuzzy sets and systems. V. 452, Cjan. 2023. P. 91-109.
- Yongchao Liu, Qidan Zhu, Xing Fan. Event-triggered adaptive fuzzy control for stochastic nonlinear time-delay systems // Fuzzy sets and systems. V. 452, Cjan. 2023. P. 42-60.
- Weiwei Ma, Xin-Chun Jia, Fuwen Yang, Xiaobo Chi. Fuzzy dynamics output feedback control for nonlinear networked multirate sampled-data systems: An integral inequality method // Fuzzy sets and systems. V. 452. Cjan. 2023. P. 110-130.
- Hao Shen, Jiacheng Wu, Feng Li, Xiangyong Chen, Jing Wang. Fuzzy multi-objective fault-tolerant control for nonlinear Markov jump singularly perturbed system with persistent dwell-time switched transition probabilities // Fuzzy sets and systems. V. 452, Cjan. 2023. P. 131-148.
- Khatskevich Vladimir. On Modification of the Law of Large Numbers and Linear Regression of Fuzzy Random Variables // International Conference on Stochastic Methods ICSM-5 2020/ Recent Developments in Stochastic Methods and Applications. P. 76-91.
- Dubois D., Prade H. The mean value of fuzzy number // Fuzzy sets and systems. V. 24, Cdec.1987. P. 279-300.
- Yazenin A.V. Osnovnye ponyatiya teorii vozmozhnostej [Basic concepts of the theory of possibilities]. M.: Fizmatlit [Moscow: Physical education]. 2016. 144 р.
Supplementary files
