Biocatalytic Heterogeneous Processes of the Esterification of Saturated Fatty Acids with Aliphatic Alcohols
- Authors: Kovalenko G.A.1,2, Perminova L.V.1, Beklemishev A.B.1,3, Mamaev A.L.3, Patrushev Y.V.1,2
-
Affiliations:
- Boreskov Institute of Catalysis, Siberian Branch
- Novosibirsk State University
- Institute of Biochemistry, Siberian Branch
- Issue: Vol 10, No 1 (2018)
- Pages: 68-74
- Section: Biocatalysis
- URL: https://bakhtiniada.ru/2070-0504/article/view/202751
- DOI: https://doi.org/10.1134/S2070050418010075
- ID: 202751
Cite item
Abstract
Heterogeneous biocatalysts prepared by immobilizing a recombinant lipase from Thermomyces lanuginosus on mesoporous inorganic supports—silica (SiO2), alumina (Al2O3), and titania (TiO2)—are comparatively studied in the esterification of fatty acids with aliphatic alcohols. It is found that the T. lanuginosus lipase adsorbed on silica has the highest esterifying activity, while the lipase adsorbed on titania is completely inactivated. SiO2-based catalysts have high activity and stability in the esterification of saturated fatty acids containing 4–18 carbon atoms (C4–C18) with aliphatic alcohols (C5–C16) in organic solvents (hexane and diethyl ether). The catalysts operate in this reaction for several tens of reaction cycles (>40) without loss of activity. The recombinant rPichia/lip lipase immobilized on silica exhibits the most pronounced specificity for its first substrate, a fatty acid. For instance, the rate of synthesis for esters of low molecular weight acids (С4–С6) is three to four times slower than for the esters of acids with more than seven carbon atoms. The catalyst has a relatively broad specificity for the second substrate, an aliphatic alcohol. It is found that the ester of enanthic acid (C7:0) and butanol (C4) is synthesized at the maximum rate.
About the authors
G. A. Kovalenko
Boreskov Institute of Catalysis, Siberian Branch; Novosibirsk State University
Author for correspondence.
Email: galina@catalysis.ru
Russian Federation, Novosibirsk, 630090; Novosibirsk, 630090
L. V. Perminova
Boreskov Institute of Catalysis, Siberian Branch
Email: galina@catalysis.ru
Russian Federation, Novosibirsk, 630090
A. B. Beklemishev
Boreskov Institute of Catalysis, Siberian Branch; Institute of Biochemistry, Siberian Branch
Email: galina@catalysis.ru
Russian Federation, Novosibirsk, 630090; Novosibirsk, 630117
A. L. Mamaev
Institute of Biochemistry, Siberian Branch
Email: galina@catalysis.ru
Russian Federation, Novosibirsk, 630117
Yu. V. Patrushev
Boreskov Institute of Catalysis, Siberian Branch; Novosibirsk State University
Email: galina@catalysis.ru
Russian Federation, Novosibirsk, 630090; Novosibirsk, 630090
Supplementary files
