Adsorption of phenol on activated carbon obtained from date palm branches
- Authors: Ahmed S.A.1,2, Gogina E.S.3,4, Makisha N.A.2
-
Affiliations:
- Aswan University
- Moscow State University of Civil Engineering (National Research University) (MGSU)
- Sergo Ordzhonikidze Russian State University for Geological Prospecting (MGRI)
- Research Institute of Building Physics of the Russian Academy of Architecture and Building Sciences (NIISF RAASN)
- Issue: Vol 19, No 3 (2024)
- Pages: 426-435
- Section: Engineering systems in construction
- URL: https://bakhtiniada.ru/1997-0935/article/view/255906
- ID: 255906
Cite item
Full Text
Abstract
About the authors
Sameh Abdel'fattakh Arabi Ahmed
Aswan University; Moscow State University of Civil Engineering (National Research University) (MGSU)
Email: Sameh.araby@aswu.edu.eg
ORCID iD: 0000-0003-2845-2749
E. S. Gogina
Sergo Ordzhonikidze Russian State University for Geological Prospecting (MGRI); Research Institute of Building Physics of the Russian Academy of Architecture and Building Sciences (NIISF RAASN)
Email: gogina-es@yandex.ru
ORCID iD: 0000-0003-4809-5910
N. A. Makisha
Moscow State University of Civil Engineering (National Research University) (MGSU)
Email: makishana@mgsu.ru
ORCID iD: 0000-0003-2567-4450
References
- Артемьянов А.П., Земскова Л.А., Иванов В.В. Каталитическое жидкофазное окисление фенола в водных средах с использованием катализатора углеродное волокно / (железо, оксид железа) // Известия высших учебных заведений. Серия: Химия и химическая технология. 2017. T. 60. № 8. C. 88–95. doi: 10.6060/tcct.2017608.5582. EDN ZDNKPD.
- Тамаркина Ю.В., Анищенко В.Н., Редько А.Н., Кучеренко В.А. Адсорбция фенола активированными углями на основе ископаемых углей разной степени метаморфизма // Химия твердого топлива. 2021. № 3. С. 3–11. doi: 10.31857/S0023117721030105. EDN JWZHPL.
- Yohi S., Wu C.-M., Koodali R.T. A kinetic study of photocatalytic degradation of phenol over titania–silica mixed oxide materials under UV illumination // Catalysts. 2022. Vol. 12. Issue 2. P. 193. doi: 10.3390/catal12020193
- Beloborodova N., Bairamov I., Olenin A., Shubina V., Teplova V., Fedotcheva N. Effect of phenolic acids of microbial origin on production of reactive oxygen species in mitochondria and neutrophils // Journal of Biomedical Science. 2012. Vol. 19. Issue 1. doi: 10.1186/1423-0127-19-89
- Michałowicz J., Duda W. Phenols — sources and toxicity // Polish Journal of Environmental Studies. 2007. Vol. 16. Issue 3. Pp. 347–362. EDN MFIKYZ.
- Liew R.K., Chong M.Y., Osazuwa O.U., Nam W.L., Phang X.Y., Su M.H., Cheng C.K. Production of activated carbon as catalyst support by microwave pyrolysis of palm kernel shell: a comparative study of chemical versus physical activation // Research on Chemical Intermediates. 2018. Vol. 44. Issue 6. Pp. 3849–3865. doi: 10.1007/s11164-018-3388-y
- Enaime G., Ennaciri K., Ounas A., Bacaoui A., Seffen M., Selmi T. Preparation and characterization of activated carbons from olive wastes by physical and chemical activation: application to indigo carmine adsorption // Journal of Materials and Environmental Sciences. 2017. Vol. 8. Issue 11. Pp. 4125–4137.
- Mbarki F., Selmi T., Kesraoui A., Seffen M. Low-cost activated carbon preparation from Corn stigmata fibers chemically activated using H3PO4, ZnCl2 and KOH: Study of methylene blue adsorption, stochastic isotherm and fractal kinetic // Industrial Crops and Products. 2022. Vol. 178. P. 114546. doi: 10.1016/j.indcrop.2022.114546
- Gupta A., Balomajumder C. Simultaneous adsorption of Cr(VI) and phenol from binary mixture using iron incorporated rice husk: insight to multicomponent equilibrium isotherm // International Journal of Chemical Engineering. 2016. Vol. 2016. Pp. 1–11. doi: 10.1155/2016/7086761
- Gupta A., Garg A. Primary sewage sludge-derived activated carbon: Characterisation and application in wastewater treatment // Clean Technologies and Environmental Policy. 2015. Vol. 17. Issue 6. Pp. 1619–1631. doi: 10.1007/s10098-014-0895-4
- Kacan E. Optimum BET surface areas for activated carbon produced from textile sewage sludges and its application as dye removal // Journal of Environmental Management. 2016. Vol. 166. Pp. 116–123. doi: 10.1016/j.jenvman.2015.09.044
- Gundogdu A., Duran C., Senturk H.B., Soylak M., Ozdes D., Serencam H. et al. Adsorption of phenol from aqueous solution on a low-cost activated carbon produced from tea industry waste: Equilibrium, kinetic, and thermodynamic study // Journal of Chemical & Engineering Data. 2012. Vol. 57. Issue 10. Pp. 2733–2743. doi: 10.1021/je300597u
- Da̧browski A., Podkościelny P., Hubicki Z., Barczak M. Adsorption of phenolic compounds by activated carbon : a critical review // Chemosphere. 2005. Vol. 58. Issue 8. Pp. 1049–1070. doi: 10.1016/j.chemosphere.2004.09.067
- Busca G., Berardinelli S., Resini C., Arrighi L. Technologies for the removal of phenol from fluid streams : a short review of recent developments // Journal of Hazardous Materials. 2008. Vol. 160. Issue 2–3. Pp. 265–288. doi: 10.1016/j.jhazmat.2008.03.045
- Lü G., Hao J., Liu L., Ma H., Fang Q., Wu L. et al. The adsorption of phenol by lignite activated carbon // Chinese Journal of Chemical Engineering. 2011. Vol. 19. Issue 3. Pp. 380–385. doi: 10.1016/S1004-9541(09)60224-x
- Yang G., Chen H., Qin H., Feng Y. Amination of activated carbon for enhancing phenol adsorption: Effect of nitrogen-containing functional groups // Applied Surface Science. 2014. Vol. 293. Pp. 299–305. doi: 10.1016/j.apsusc.2013.12.155
- Ho Y.S., McKay G. Pseudo-second order model for sorption processes // Process Biochemistry. 1999. Vol. 34. Issue 5. Pp. 451–465. doi: 10.1016/S0032-9592(98)00112-5
- Vieira A.P., Santana S.A.A., Bezerra C.W.B., Silva H.A.S., Chaves J.A.P., de Melo J.C.P. et al. Kinetics and thermodynamics of textile dye adsorption from aqueous solutions using babassu coconut mesocarp // Journal of Hazardous Materials. 2009. Vol. 166. Issue 2–3. Pp. 1272–1278. doi: 10.1016/j.jhazmat.2008.12.043
- Qiu H., Lv L., Pan B., Zhang Q.Q., Zhang W., Zhang Q.Q. Critical review in adsorption kinetic models // Journal of Zhejiang University-SCIENCE A. 2009. Vol. 10. Issue 5. Pp. 716–724. doi: 10.1631/jzus.A0820524
- Fu Y., Shen Y., Zhang Z., Ge X., Chen M. Activated bio-chars derived from rice husk via one- and two-step KOH-catalyzed pyrolysis for phenol adsorption // Science of the Total Environment. 2019. Vol. 646. Pp. 1567–1577. doi: 10.1016/j.scitotenv.2018.07.423
- Shi R., Li Y., Yin J., Yang S. Preparation of activated carbon from corn straw and research of adsorption kinetics // Chinese Journal of Environmental Engineering. 2014. Vol. 8. Issue 8. Pp. 3428–3432.
- Al-Malack M.H., Dauda M. Competitive adsorption of cadmium and phenol on activated carbon produced from municipal sludge // Journal of Environmental Chemical Engineering. 2017. Vol. 5. Issue 3. Pp. 2718–2729. doi: 10.1016/j.jece.2017.05.027
- Yener J., Kopac T., Dogu G., Dogu T. Dynamic analysis of sorption of Methylene Blue dye on granular and powdered activated carbon // Chemical Engineering Journal. 2008. Vol. 144. Issue 3. Pp. 400–406. doi: 10.1016/j.cej.2008.02.009
- Srivastava V.C., Swamy M.M., Mall I.D., Prasad B., Mishra I.M. Adsorptive removal of phenol by bagasse fly ash and activated carbon: Equilibrium, kinetics and thermodynamics // Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2006. Vol. 272. Issue 1–2. Pp. 89–104. doi: 10.1016/j.colsurfa.2005.07.016
- Makrigianni V., Giannakas A., Deligiannakis Y., Konstantinou I. Adsorption of phenol and methylene blue from aqueous solutions by pyrolytic tire char: Equilibrium and kinetic studies // Journal of Environmental Chemical Engineering. 2015. Vol. 3. Issue 1. Pp. 574–582. doi: 10.1016/j.jece.2015.01.006
- Sierra I., Iriarte-Velasco U., Cepeda E.A., Gamero M., Aguayo A.T. Preparation of carbon-based adsorbents from the pyrolysis of sewage sludge with CO2 Investigation of the acid washing procedure // Desalination and Water Treatment. 2016. Vol. 57. Issue 34. Pp. 16053–16065. doi: 10.1080/19443994.2015.1075428
- Kumar A., Jena H.M. Removal of methylene blue and phenol onto prepared activated carbon from Fox nutshell by chemical activation in batch and fixed-bed column // Journal of Cleaner Production. 2016. Vol. 137. Pp. 1246–1259. doi: 10.1016/j.jclepro.2016.07.177
- Shen Y., Fu Y. KOH-activated rice husk char via CO2 pyrolysis for phenol adsorption // Materials Today Energy. 2018. Vol. 9. Pp. 397–405. doi: 10.1016/j.mtener.2018.07.005
- Da Gama B.M.V., do Nascimento G.E., Sales D.C.S., Rodríguez-Díaz J.M., de Menezes Barbosa C.M.B., Duarte M.M.M.B. Mono and binary component adsorption of phenol and cadmium using adsorbent derived from peanut shells // Journal of Cleaner Production. 2018. Vol. 201. Pp. 219–228. doi: 10.1016/j.jclepro.2018.07.291
- Kilic M., Apaydin-Varol E., Pütün A.E. Adsorptive removal of phenol from aqueous solutions on activated carbon prepared from tobacco residues: Equilibrium, kinetics and thermodynamics // Journal of Hazardous Materials. 2011. Vol. 189. Issue 1–2. Pp. 397–403. doi: 10.1016/j.jhazmat.2011.02.051
- Singh K.P., Malik A., Sinha S., Ojha P. Liquid-phase adsorption of phenols using activated carbons derived from agricultural waste material // Journal of Hazardous Materials. 2008. Vol. 150. Issue 3. Pp. 626–641. doi: 10.1016/j.jhazmat.2007.05.017
Supplementary files
