🔧На сайте запланированы технические работы
25.12.2025 в промежутке с 18:00 до 21:00 по Московскому времени (GMT+3) на сайте будут проводиться плановые технические работы. Возможны перебои с доступом к сайту. Приносим извинения за временные неудобства. Благодарим за понимание!
🔧Site maintenance is scheduled.
Scheduled maintenance will be performed on the site from 6:00 PM to 9:00 PM Moscow time (GMT+3) on December 25, 2025. Site access may be interrupted. We apologize for the inconvenience. Thank you for your understanding!

 

Zeros of Holomorphic Functions in the Unit Ball and Subspherical Functions


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

We continue our previous results from the functions of one complex variable in the unit disk to the functions of several variables in the unit ball. Let M be a δ-subharmonic function with Riesz charge µM on the unit ball \(\mathbb{B}\) in ℂn. Let f be a nonzero holomorphic function on \(\mathbb{B}\) such that f vanishes on Z ⊂ \(\mathbb{B}\), and satisfies the inequality ∣f∣ ≤ exp M on \(\mathbb{B}\). Then restrictions on the growth of µM near the boundary of B imply certain restrictions on the distribution of Z. We give a quantitative study of this phenomenon in terms of (2n − 2)-Hausdorff measure of zero subset Z, and special non-radial test subharmonic functions constructed using ρ-subspherical functions.

作者简介

B. Khabibullin

Bashkir State University

编辑信件的主要联系方式.
Email: khabib-bulat@mail.ru
俄罗斯联邦, Bashkortostan, Ufa, 420076

F. Khabibullin

Bashkir State University

Email: khabib-bulat@mail.ru
俄罗斯联邦, Bashkortostan, Ufa, 420076

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2019