🔧На сайте запланированы технические работы
25.12.2025 в промежутке с 18:00 до 21:00 по Московскому времени (GMT+3) на сайте будут проводиться плановые технические работы. Возможны перебои с доступом к сайту. Приносим извинения за временные неудобства. Благодарим за понимание!
🔧Site maintenance is scheduled.
Scheduled maintenance will be performed on the site from 6:00 PM to 9:00 PM Moscow time (GMT+3) on December 25, 2025. Site access may be interrupted. We apologize for the inconvenience. Thank you for your understanding!

 

Zeros of Holomorphic Functions in the Unit Ball and Subspherical Functions


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

We continue our previous results from the functions of one complex variable in the unit disk to the functions of several variables in the unit ball. Let M be a δ-subharmonic function with Riesz charge µM on the unit ball \(\mathbb{B}\) in ℂn. Let f be a nonzero holomorphic function on \(\mathbb{B}\) such that f vanishes on Z ⊂ \(\mathbb{B}\), and satisfies the inequality ∣f∣ ≤ exp M on \(\mathbb{B}\). Then restrictions on the growth of µM near the boundary of B imply certain restrictions on the distribution of Z. We give a quantitative study of this phenomenon in terms of (2n − 2)-Hausdorff measure of zero subset Z, and special non-radial test subharmonic functions constructed using ρ-subspherical functions.

Sobre autores

B. Khabibullin

Bashkir State University

Autor responsável pela correspondência
Email: khabib-bulat@mail.ru
Rússia, Bashkortostan, Ufa, 420076

F. Khabibullin

Bashkir State University

Email: khabib-bulat@mail.ru
Rússia, Bashkortostan, Ufa, 420076

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Pleiades Publishing, Ltd., 2019