🔧На сайте запланированы технические работы
25.12.2025 в промежутке с 18:00 до 21:00 по Московскому времени (GMT+3) на сайте будут проводиться плановые технические работы. Возможны перебои с доступом к сайту. Приносим извинения за временные неудобства. Благодарим за понимание!
🔧Site maintenance is scheduled.
Scheduled maintenance will be performed on the site from 6:00 PM to 9:00 PM Moscow time (GMT+3) on December 25, 2025. Site access may be interrupted. We apologize for the inconvenience. Thank you for your understanding!

 

Topological classification of the Goryachev integrable systems in the rigid body dynamics: non-compact case


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

We study the topology of the Liouville foliation of the Goryachev integrable case in the rigid body dynamics which is a one-parameter family of completely integrable Hamiltonian systems with two degrees of freedom. For this problem P. E. Ryabov has found a real separation of variables with the aid of which he studied the phase topology of the Goryachev systems for positive values of the parameter. We solve the similar problem for negative values of the parameter. This case is of special interest because all the leaves of the Liouville foliation and the surfaces of constant energy turn out to be non-compact. The results are presented in the form of Fomenko invariants for all regular energy levels.

Sobre autores

S. Nikolaenko

Faculty of Mechanics and Mathematics

Autor responsável pela correspondência
Email: nikostas@mail.ru
Rússia, Moscow, 119991

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Pleiades Publishing, Ltd., 2017