🔧На сайте запланированы технические работы
25.12.2025 в промежутке с 18:00 до 21:00 по Московскому времени (GMT+3) на сайте будут проводиться плановые технические работы. Возможны перебои с доступом к сайту. Приносим извинения за временные неудобства. Благодарим за понимание!
🔧Site maintenance is scheduled.
Scheduled maintenance will be performed on the site from 6:00 PM to 9:00 PM Moscow time (GMT+3) on December 25, 2025. Site access may be interrupted. We apologize for the inconvenience. Thank you for your understanding!

 

The use of Ann for the prediction of the modified relative permeability functions in stratified reservoirs


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The paper presents a method of instantaneous construction of relative permeability pseudo functions in analytical form upscaled to a coarser computational grid using a system of artificial neural networks. The coefficients of these functions can be forecasted by the neural network. The learning dataset is based on a preliminary series of calculations at the reference values of the system parameters the exponents of the initial functions, the liquid phases viscosity ratio, the statistical parameters of distribution laws of the reservoir’s properties. The latter may be obtained according to the primary well logging data with no need for building a detailed geological model.

作者简介

K. Potashev

Kazan (Volga Region) Federal University, N.I. Lobachevsky Institute of Mathematics and Mechanics

编辑信件的主要联系方式.
Email: kpotashev@mail.ru
俄罗斯联邦, Kazan, 420008

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2017